【題目】下列說(shuō)法:

①函數(shù)的單調(diào)增區(qū)間是;

②若函數(shù)定義域?yàn)?/span>且滿(mǎn)足,則它的圖象關(guān)于軸對(duì)稱(chēng);

③函數(shù)的值域?yàn)?/span>

④函數(shù)的圖象和直線(xiàn)的公共點(diǎn)個(gè)數(shù)是,則的值可能是;

⑤若函數(shù)上有零點(diǎn),則實(shí)數(shù)的取值范圍是.

其中正確的序號(hào)是_________.

【答案】③ ④ ⑤

【解析】

根據(jù)當(dāng)x=0時(shí),函數(shù)的解析式無(wú)意義可判斷①;根據(jù)函數(shù)對(duì)稱(chēng)性,可得函數(shù)y=f(x)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),可判斷②;畫(huà)出函數(shù)f(x)=(x∈R)的圖象,結(jié)合函數(shù)圖象分析出函數(shù)的值域,可判斷③;畫(huà)出函數(shù)y=|3﹣x2|的圖象,可分析出函數(shù)y=|3﹣x2|的圖象和直線(xiàn)y=a(a∈R)的公共點(diǎn)個(gè)數(shù),可判斷④;根據(jù)二次函數(shù)的圖象和性質(zhì)分析出函數(shù)f(x)=x2﹣2ax+5(a>1)在x∈[1,3]上有零點(diǎn),實(shí)數(shù)a的取值范圍,可判斷⑤.

當(dāng)x=0時(shí),x2﹣2x﹣3=﹣3,此時(shí)無(wú)意義,故①錯(cuò)誤;

若函數(shù)y=f(x)滿(mǎn)足f(1﹣x)=f(x+1),則函數(shù)y=f(x)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),故②錯(cuò)誤;

畫(huà)出函數(shù)f(x)=(x∈R)的圖象如圖,

由圖可得函數(shù)的值域?yàn)椋ī?,1);

畫(huà)出函數(shù)y=|3﹣x2|的圖象,

由圖可知,函數(shù)y=|3﹣x2|的圖象和直線(xiàn)y=a公共點(diǎn)可能是0,2,3,4個(gè),故④正確

若f(x)在x∈[1,3]上有零點(diǎn),則f(x)=0在x∈[1,3]上有實(shí)數(shù)解

∴2a=x+在x∈[1,3]上有實(shí)數(shù)解

令g(x)=x+則g(x)在[1,]單調(diào)遞減,在(,3]單調(diào)遞增且g(1)=6,g(3)=,∴2≤g(x)≤6,即2≤2a≤6,故 ≤a≤3故⑤正確

故答案為:③④⑤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知橢圓 過(guò)點(diǎn),離心率為,左、右焦點(diǎn)分別為、,點(diǎn)為直線(xiàn)上且不在軸上的任意一點(diǎn),直線(xiàn)與橢圓的交點(diǎn)分別為、、,為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線(xiàn)的斜線(xiàn)分別為、.

i)證明:

ii)問(wèn)直線(xiàn)上是否存在點(diǎn),使得直線(xiàn)、、的斜率、、滿(mǎn)足?若存在,求出所有滿(mǎn)足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù)偶函數(shù)

(1)值;

(2)若函數(shù),是否存在實(shí)數(shù)使得最小值為0,若存在,求出值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,把圓上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到曲線(xiàn),且傾斜角為,經(jīng)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn).

(1)當(dāng)時(shí),求曲線(xiàn)的普通方程與直線(xiàn)的參數(shù)方程;

(2)求點(diǎn)兩點(diǎn)的距離之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工藝公司要對(duì)某種工藝品深加工,已知每個(gè)工藝品進(jìn)價(jià)為20元,每個(gè)的加工費(fèi)為n元,銷(xiāo)售單價(jià)為x.根據(jù)市場(chǎng)調(diào)查,須有,,同時(shí)日銷(xiāo)售量m(單位:個(gè))與成正比.當(dāng)每個(gè)工藝品的銷(xiāo)售單價(jià)為29元時(shí),日銷(xiāo)售量為1000個(gè).

1)寫(xiě)出日銷(xiāo)售利潤(rùn)y(單位:元)與x的函數(shù)關(guān)系式;

2)當(dāng)每個(gè)工藝品的加工費(fèi)用為5元時(shí),要使該公司的日銷(xiāo)售利潤(rùn)為100萬(wàn)元,試確定銷(xiāo)售單價(jià)x的值.(提示:函數(shù)的圖象在上有且只有一個(gè)公共點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是(

;②;③;④

A. ①② B. ①③ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線(xiàn)與圓相交于兩點(diǎn)A,B.問(wèn):是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

點(diǎn)P是曲線(xiàn)C1:(x-2)2+y2=4上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸

建立極坐標(biāo)系,將點(diǎn)P繞極點(diǎn)O逆時(shí)針90得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡為曲線(xiàn)C2.

求曲線(xiàn)C1,C2的極坐標(biāo)方程;

射線(xiàn)= (>0)與曲線(xiàn)C1,C2分別交于A,B兩點(diǎn),定點(diǎn)M(2,0),MAB的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為定義在R上的偶函數(shù),,且當(dāng)時(shí),單調(diào)遞增,則不等式的解集為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案