(本小題滿分12分)
如圖,在四棱錐S—ABCD中,底面ABCD,底面ABCD是矩形,
,E是SA的中點.
(1)求證:平面BED平面SAB;
(2)求直線SA與平面BED所成角的大�。�
(1)見解析;(2)45°
【解析】本題考查面面垂直,考查線面角,解題的關鍵是掌握面面垂直的判定,正確得出線面角,屬于中檔題.
(1)證明平面BED⊥平面SAB,利用面面垂直的判定定理,證明DE⊥平面SAB即可;
(2)作AF⊥BE,垂足為F,可得∠AEF是直線SA與平面BED所成的角,在Rt△AFE中,即可求得結論.
解:(1)∵SD⊥平面ABCD,∴平面SAD⊥平面ABCD,
∵AB⊥AD,∴AB⊥平面SAD,∴DE⊥AB. …………………………………………3分
∵SD=AD,E是SA的中點,∴DE⊥SA,
∵AB∩SA=A,∴DE⊥平面SAB
∴平面BED⊥平面SAB.(若用向量法請參照給分)……………………………………6分
(2)法一:作AF⊥BE,垂足為F.
由(Ⅰ),平面BED⊥平面SAB,則AF⊥平面BED,
則∠AEF是直線SA與平面BED所成的角.……………………………………………8分
設AD=2A,則AB=A,SA=2
A,AE=
A,
△ABE是等腰直角三角形,則AF=A.
在Rt△AFE中,sin∠AEF==
,
故直線SA與平面BED所成角的大小45°.…………………………………………12分
(2)法二:分別以DA,DC,DS為坐標軸建立坐標系D—xyz,不妨設AD=2,則
D(0,0,0),A(2,0,0),B(2,,0),
C(0,,0),S(0,0,2),E(1,0,1).
=(2,
,0),
=(1,0,1),
=(2,0,0),
=(0,-
,2).
設m=(x1,y1,z1)是面BED的一個法向量,則
,因此可取m=(-1,
,1).…………………8分
……12分
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、
、
.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com