(2012•包頭一模)有下列命題:
①設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分而不必要條件;
②命題“若a∈M,則b∉M”的逆否命題是:若b∈M,則a∉M;
③若p∧q是假命題,則p,q都是假命題;
④命題P:“?x0∈R,
x
2
0
-x0-1>0
”的否定¬P:“?x∈R,x2-x-1≤0”
則上述命題中為真命題的是( 。
分析:本題考查的知識點(diǎn)是,判斷命題真假.
(1)考查了集合間的關(guān)系,在集合M中任取一個x值,看其是否在集合N中,反之,在集合N中任取一個x值,判斷其是否又在集合M中;
(2)考查命題的逆否命題,把原命題的結(jié)論取否定作為條件,條件取否定作為結(jié)論;
(3)考查復(fù)合命題的真假判斷,兩個命題中只要有一個假命題,則p∧q為假命題;
(4)考查特稱命題的否定,注意特稱命題的否定全稱命題的格式.
解答:解:對于①,a在集合M中取值為3,但3不在集合N中,有a∈M,但a∉N,所以“a∈M”是“a∈N”的不充分條件,所以①不正確;
對于②,把原命題的結(jié)論取否定作為條件,條件取否定作為結(jié)論,所以,命題“若a∈M,則b∉M”的逆否命題是:若b∈M,則a∉M,所以命題②正確;
對于③,假若p,q中有一個為真命題,則p∧q也是假命題,所以,命題③不正確;
對于④,特稱命題的否定是全稱命題,所以命題P:“?x0∈R,
x
2
0
-x0-1>0
”的否定¬P:“?x∈R,x2-x-1≤0”正確.
故選C.
點(diǎn)評:本題考查了命題的真假判斷與運(yùn)用,解答的關(guān)鍵是熟練基本概念,掌握有關(guān)格式,如特稱命題否定的格式 特稱命題P:?x0∈M,p(x0),否定¬p:?x∈M,¬p(x).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2,AB=1.
(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點(diǎn),求證:平面PAC⊥平面AEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)下列命題錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與拋物線y2=8x有 一個公共的焦點(diǎn)F,且兩曲線的一個交點(diǎn)為P,若|PF|=5,則雙曲線方程為
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)函數(shù)f(x)=sin(ωx+?)(其中|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 
x=acosφ
y=bsinφ
(a>b>0,?為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線C1上的點(diǎn)M(1,
3
2
)對應(yīng)的參數(shù)φ=
π
3
,曲線C2過點(diǎn)D(1,
π
3
).
(Ⅰ)求曲線C1,C2的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)A(ρ 1,θ),B(ρ 2,θ+
π
2
) 在曲線C1上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

同步練習(xí)冊答案