在一次運(yùn)動(dòng)會(huì)上,某單位派出了有6名主力隊(duì)員和5名替補(bǔ)隊(duì)員組成的代表隊(duì)參加比賽.如果隨機(jī)抽派5名隊(duì)員上場(chǎng)比賽,將主力隊(duì)員參加比賽的人數(shù)記為X,求隨機(jī)變量X的概率分布以及隨機(jī)變量X數(shù)學(xué)期望;(本題結(jié)果用分?jǐn)?shù)表示即可)
解:依題意知,抽取r個(gè)主力隊(duì)員的概率為,r=0,1,2,3,4,5.
隨機(jī)變量X的分布列為            
X
0
1
2
3
4
5







∵X服從超幾何分布  ∴隨機(jī)變量X的數(shù)學(xué)期望E(X)=  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)某班級(jí)50名同學(xué)一年來(lái)參加社會(huì)實(shí)踐的次數(shù)進(jìn)行的調(diào)查統(tǒng)計(jì),得到如下頻率分布表:
參加次數(shù)
0
1
2
3
人數(shù)
0.1
0.2
0.4
0.3
根據(jù)上表信息解答以下問(wèn)題:
(1)從該班級(jí)任選兩名同學(xué),用η表示這兩人參加社會(huì)實(shí)踐次數(shù)之和,記“函數(shù)在區(qū)間內(nèi)有零點(diǎn)”的事件為,求發(fā)生的概率
(2)從該班級(jí)任選兩名同學(xué),用ξ表示這兩人參加社會(huì)實(shí)踐次數(shù)之差的絕對(duì)值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
張先生家住H小區(qū),他工作在C科技園區(qū),從家開(kāi)車(chē)到公司上班路上有L1,L2兩條路線(xiàn)(如圖),L1路線(xiàn)上有A1,A2,A3三個(gè)路口,各路口遇到紅燈的概率均為;L2路線(xiàn)上有B1,B2兩個(gè)路口,各路口遇到紅燈的概率依次為,
(Ⅰ)若走L1路線(xiàn),求最多遇到1次紅燈的概率;
(Ⅱ)若走L2路線(xiàn),求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助張先生分析上述兩條路線(xiàn)中,選擇
哪條上班路線(xiàn)更好些,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿(mǎn)6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立.求:
(1)打了兩局就停止比賽的概率;
(2)打滿(mǎn)3局比賽還未停止的概率;
(3)比賽停止時(shí)已打局?jǐn)?shù)的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)一射擊測(cè)試每人射擊三次,每擊中目標(biāo)一次記10分。沒(méi)有擊中記0分,某人每次擊中目標(biāo)的概率為
(I)求此人得20分的概率;(II)求此人得分的數(shù)學(xué)期望與方差。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

把一根長(zhǎng)度為8的鐵絲截成3段。
(1)     若三段的長(zhǎng)度均為整數(shù),求三段的長(zhǎng)度能構(gòu)成三角形的概率;
(2)     若把鐵絲截成2,2,4的三段放入一盒子中,然后有放回地摸4次,設(shè)摸到長(zhǎng)度為2的鐵絲的次數(shù)為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果數(shù)據(jù)x1,x2,x3,…,xn的平均數(shù)為 ,方差為62,則數(shù)據(jù)3x1+5,3x2+5,…,3xn+5的平均數(shù)和方差分別是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

因冰雪災(zāi)害,某柑橘基地果林嚴(yán)重收損,為此有關(guān)專(zhuān)家提出一種拯救果樹(shù)的方案,該方案需分兩年實(shí)施且相互獨(dú)立。該方案預(yù)計(jì)第一年可以使柑橘產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.2、0.4、0.4;第二年可以使柑橘產(chǎn)量為第一年的1.5倍、1.25倍、1.0倍的概率分別是0.3、0.3、0.4,求兩年后柑橘產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)隨機(jī)變量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,則P(η≥2)的值為-------(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案