(本小題滿分12分)設(shè)數(shù)列滿足且對一切,有
(1)求數(shù)列的通項;
(2)設(shè) ,求的取值范圍.

(1);(2)

解析試題分析:(1)由可得:
∴數(shù)列為等差數(shù)列,且首項 ,公差為…………3分
   …………4分
(2)由(1)可知:……7分


        …………10分
易知:時,單調(diào)遞增,∴         …………11分
∴                   …………12分
考點:等差數(shù)列的性質(zhì);等差數(shù)列的通項公式;數(shù)列通項公式的求法;數(shù)列前n項和的求法。
點評:求數(shù)列的通項公式和數(shù)列的前n項和是數(shù)列中常見題型。這兒求數(shù)列的前n項和用的是裂項法。常見的裂項公式:,,,,,。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中, .
(Ⅰ)設(shè),求數(shù)列的通項公式;
(Ⅱ)設(shè)求證:是遞增數(shù)列的充分必要條件是 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,點在直線上.數(shù)列滿足,且,前9項和為153.
(1)求數(shù)列、{的通項公式;
(2)設(shè),數(shù)列的前和為,求使不等式對一切都成立的最大正整數(shù)的值;
(3)設(shè),問是否存在,使得成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)設(shè)是公差的等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,且,

(1)求數(shù)列的通項公式;
(2)設(shè)…),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知方程tan2x一tan x+1=0在x[0,n)( nN*)內(nèi)所有根的和記為an
(1)寫出an的表達式;(不要求嚴格的證明)
(2)記Sn = a1 + a2 +…+ an求Sn;
(3)設(shè)bn =(kn一5) ,若對任何nN* 都有anbn,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知數(shù)列滿足:(其中常數(shù)).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求證:當時,數(shù)列中的任何三項都不可能成等比數(shù)列;
(Ⅲ)設(shè)為數(shù)列的前項和.求證:若任意,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
數(shù)列的前項和為,若,點在直線上.
⑴求證:數(shù)列是等差數(shù)列;
⑵若數(shù)列滿足,求數(shù)列的前項和;
⑶設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)已知數(shù)列的通項公式為,數(shù)列的前n項和為,且滿足
(1)求的通項公式;
(2)在中是否存在使得中的項,若存在,請寫出滿足題意的一項(不要求寫出所有的項);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)已知數(shù)列、滿足,是首項為1,公差為1的等差數(shù)列.
(1)求數(shù)列的通項公式;(2)求數(shù)列的通項公式;(3)求數(shù)列的前項和

查看答案和解析>>

同步練習冊答案