【題目】過去大多數(shù)人采用儲(chǔ)蓄的方式將錢儲(chǔ)蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲(chǔ)蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財(cái)工具也多了起來,為了研究某種理財(cái)工具的使用情況,現(xiàn)對(duì)年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成5組,,,,,,并整理得到頻率分布直方圖:

(Ⅰ)求圖中的值;

(Ⅱ)求被調(diào)查人員的年齡的中位數(shù)和平均數(shù);

(Ⅲ)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,在抽取的8人中隨機(jī)抽取2人,則這2人都來自于第三組的概率是多少?

【答案】(Ⅰ);(Ⅱ)中位數(shù)46.250;平均數(shù)47;(Ⅲ).

【解析】

()由題意得到關(guān)于a的方程,解方程即可確定實(shí)數(shù)a的值;

()利用中位數(shù)將頻率分布直方圖分為左右兩側(cè)面積相等的兩部分可得中位數(shù)的值,然后利用平均數(shù)公式計(jì)算年齡的平均數(shù)即可;

()由題意首先確定每組所抽取的人數(shù),然后列出所有可能的事件,最后利用古典概型計(jì)算公式可得滿足題意的概率值.

()由頻率分布直方圖的性質(zhì)可得

解得.

()中位數(shù)為

平均數(shù)為;

()第二組、第三組、第四組的頻率比為,共抽取8人,所以三個(gè)組依次抽取的人數(shù)為2,4,2.

記第二組2人分別為,,第三組4人分別為,,,,第四組2人分別為,

8人中抽取兩人共包含:

,,,,

,,,,,

,,,

,,

,,

,,,共28個(gè)基本事件,

而兩人都來自于第三組的基本事件包括:

,,,,,共6個(gè).

設(shè)這2人都來自于第三組為事件,則所求概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某創(chuàng)業(yè)投資公司投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元到100萬元的投資收益,現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加;獎(jiǎng)金不超過9萬元;獎(jiǎng)金不超過投資收益的20%.

(1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求,并分析函數(shù) 是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說明原因;

(2)若該公司采用模型函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考慮下面兩個(gè)定義域?yàn)椋?/span>0,+∞)的函數(shù)fx)的集合:對(duì)任何不同的兩個(gè)正數(shù),都有,=對(duì)任何不同的兩個(gè)正數(shù),都有

1)已知,若,且,求實(shí)數(shù)的取值范圍

2)已知,的部分函數(shù)值由下表給出:

比較4的大小關(guān)系

3)對(duì)于定義域?yàn)?/span>的函數(shù),若存在常數(shù),使得不等式對(duì)任何都成立,則稱的上界,將中所有存在上界的函數(shù)組成的集合記作,判斷是否存在常數(shù),使得對(duì)任何,都有,若存在,求出的最小值,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年六、七月份,我國(guó)長(zhǎng)江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計(jì)總體概率,解答下列問題:

假設(shè)每年的梅雨季節(jié)天氣相互獨(dú)立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.

老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤(rùn)為28萬元而乙品種楊梅的畝產(chǎn)量與降雨量之間的關(guān)系如下面統(tǒng)計(jì)表所示,又知乙品種楊梅的單位利潤(rùn)為,請(qǐng)你幫助老李分析,他來年應(yīng)該種植哪個(gè)品種的楊梅可以使總利潤(rùn)萬元的期望更大?并說明理由.

降雨量

畝產(chǎn)量

500

700

600

400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若實(shí)數(shù)為整數(shù),且對(duì)任意的時(shí),都有恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于正三角形,挖去以三邊中點(diǎn)為頂點(diǎn)的小正三角形,得到一個(gè)新的圖形,這樣的過程稱為一次鏤空操作,設(shè)是一個(gè)邊長(zhǎng)為1的正三角形,第一次鏤空操作后得到圖1,對(duì)剩下的3個(gè)小正三角形各進(jìn)行一次鏤空操作后得到圖2,對(duì)剩下的小三角形重復(fù)進(jìn)行上述操作,設(shè)是第次挖去的小三角形面積之和(如是第1次挖去的中間小三角形面積,是第2次挖去的三個(gè)小三角形面積之和),是前次挖去的所有三角形的面積之和,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為拋物線的焦點(diǎn),過點(diǎn)的直線與拋物線相交于、兩點(diǎn).

1)若,求此時(shí)直線的方程;

2)若與直線垂直的直線過點(diǎn),且與拋物線相交于點(diǎn)、,設(shè)線段、的中點(diǎn)分別為,如圖,求證:直線過定點(diǎn);

3)設(shè)拋物線上的點(diǎn)在其準(zhǔn)線上的射影分別為、,若的面積是的面積的兩倍,如圖,求線段中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,拋物線上存在一點(diǎn)到焦點(diǎn)的距離等于3.

1)求拋物線的方程;

2)過點(diǎn)的直線交拋物線,兩點(diǎn),以線段為直徑的圓交軸于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為;圓過橢圓的三個(gè)頂點(diǎn).過點(diǎn)且斜率不為0的直線與橢圓交于兩點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案