分析 作出不等式組對應(yīng)的平面區(qū)域,利用x2+y2的幾何意義求最小值.
解答 解:設(shè)z=x2+y2,則z的幾何意義為動點P(x,y)到原點距離的平方.
作出不等式組{x−y+1≥0x+y−1≥0x≤2,對應(yīng)的平面區(qū)域如圖
原點到直線x+y-1=0的距離最�。�
由點到直線的距離公式得d=|−1|√12+12=√22,
所以z=x2+y2的最小值為z=d2=12.
故答案為:12.
點評 本題主要考查點到直線的距離公式,以及簡單線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義是解決線性規(guī)劃內(nèi)容的基本方法,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∪B | B. | A∩B | C. | ∁UA∩∁UB | D. | ∁UA∪∁UB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥α,n∥α,則m∥n | B. | 若m⊥α,α⊥β,則m∥β | C. | 若m∥α,α⊥β,則m⊥β | D. | 若m⊥α,α∥β,則m⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com