已知數(shù)列{an}為等差數(shù)列,且a9-2a5=-1,a3=0,則公差d=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項(xiàng)公式即可得出.
解答: 解:設(shè)等差數(shù)列{an}的公差為d,
∵a9-2a5=-1,a3=0,
∴a1+8d-2(a1+4d)=-1,a1+2d=0,
解得a1=1,d=-
1
2

故答案為:-
1
2
點(diǎn)評:本題考查了等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2sin(2x+
π
3
)最小正周期,單調(diào)遞增區(qū)間,對稱軸,對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|+
2
ax
(a>0,a≠1)
(1)若a>1,且關(guān)于x的方程f(x)=m有兩個(gè)不同的正數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=f(-x),x∈[-2,+∞),滿足如下性質(zhì):若存在最大(。┲,則最大(。┲蹬ca無關(guān).試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(cosx,-sinx),
n
=(cosx,sinx-2
3
cosx),x∈R,令f(x)=
m
n

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,
π
4
]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,用五種不同的顏色分別給A,B,C,D四個(gè)區(qū)域涂色,相鄰區(qū)域必須涂不同顏色,若允許同一種顏色多次使用,則不同的涂色方法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
0
(ex+x)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬元),有如下的統(tǒng)計(jì)資料:
x 2 3 4 5 6
y 1.4 2.3 3.1 3.7 4.5
若由資料可知y對x呈線性相關(guān)關(guān)系,且線性回歸方程為
y
=a+bx,其中已知b=1.23,請估計(jì)使用年限為20年時(shí),維修費(fèi)用約為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=tan2(x+
π
4
)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:關(guān)于x的不等式x3-3|a|x+2≤0在(0,+∞)內(nèi)有解;q:只有一個(gè)實(shí)數(shù)x滿足不等式x2+2ax+2a≤0,若“p或q”是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案