如圖,在三棱錐A-BCD中,平面EFGH依次交AB,BC,CD,DA于E、F、G、H.
(1)若直線EH與FG相交于點O,求證:O在直線BD上;
(2)若EH∥FG,求證:EH∥BD.
考點:空間中直線與直線之間的位置關(guān)系,平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:(1)由已知條件推導(dǎo)出點O∈平面ABD,點O∈平面BCD,由此利用公理2,能證明點O在直線BD上.
(2)由EH∥FG,得EH∥平面BCD,由此能證明EH∥BD.
解答: 證明:(1)因為點O在直線EH上,直線EH?平面ABD,
所以點O∈平面ABD,
同理,點O∈平面BCD,
因為平面ABD∩平面ABD=BD,
據(jù)公理2,點O在直線BD上.
(2)因為EH∥FG,
EH?平面BCD,F(xiàn)G?平面BCD,
所以EH∥平面BCD,
又因為EH?平面ABD,平面ABD∩平面ABD=BD,
所以EH∥BD.
點評:本題考查點在直線上的證明,考查直線平行的證明,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α、β是方程4x2-4mx+m+2=0有兩個不相等的實數(shù)根,則以下哪個k的值滿足要求( 。
A、0B、-1C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式kx2-(k2+1)x-3<0的解為-1<x<3,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|使y=a
ax-x2
有意義},集合B={y|使y=a
ax-x2
有意義},A=B能否成立?如能成立,求出使A=B的a的取值范圍,如不能成立,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R且a≠2,定義在區(qū)間(-b,b)內(nèi)的函數(shù)f(x)=lg
1+ax
1+2x
是奇函數(shù).
(1)求實數(shù)b的取值范圍;
(2)判斷函數(shù)f(x)在區(qū)間(-b,b)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a6-a1=5,a2+a5=7,數(shù)列{bn}滿足b1=1,bn=2bn-1(n≥2),數(shù)列{cn}滿足cn=an•bn
(1)求數(shù)列{cn}的通項公式;
(2)求數(shù)列{cn}前n項和公式Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=
ax
x2-1
(a≠0)在區(qū)間(-1,1)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x丨x2-5x+6=0},B={x丨x2+ax+6=0}且B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|(
1
2
 x2-x-6>1},B={x|x+a<4},若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案