【題目】函數(shù),,.
(1)設(shè),假設(shè)在上遞減,求的取值范圍;
(2)假設(shè),求證:.
(3)是否存在實(shí)數(shù),使得恒成立,假設(shè)存在,求出的取值范圍,假設(shè)不存在,請(qǐng)說明理由.
【答案】(1);(2)見解析;(3)存在實(shí)數(shù)
【解析】
(1)由在遞減,得在恒成立, ,即可得到本題答案;
(2)要證明時(shí),,只需證明當(dāng),,算出的最小值和的最大值,即可得到本題答案;
(3)分和考慮的最小值,即可得到本題答案.
(1),,
由在遞減,得在恒成立,所以,
即,而,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,
即的取值范圍是;
(2)要證明時(shí),,只需證明當(dāng),,
當(dāng)時(shí),,,令,得
當(dāng)時(shí),,遞減,
當(dāng)時(shí),,遞增,
因此,
,令,解得
當(dāng)時(shí),遞增,當(dāng)時(shí),遞減,因此,而,,因此成立,即時(shí),;
(3),,
①當(dāng)時(shí),,在上遞減,因此
假設(shè)恒成立,那么,即,與矛盾;
②當(dāng)時(shí),令,得.
1.當(dāng)時(shí),即,當(dāng)時(shí),遞減,當(dāng)時(shí),遞增,因此,當(dāng)時(shí),取到唯一的極值,又是極小值,因此.
假設(shè)恒成立,即,解得.
2.當(dāng)時(shí),即,當(dāng)時(shí),遞減,因此,
假設(shè)恒成立,那么,即,與矛盾.
綜上,存在實(shí)數(shù),使得恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某學(xué)校高二年級(jí)學(xué)生的物理成績(jī),從中抽取名學(xué)生的物理成績(jī)(百分制)作為樣本,按成績(jī)分成5組:,頻率分布直方圖如圖所示,成績(jī)落在中的人數(shù)為20.
男生 | 女生 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
(1)求和的值;
(2)根據(jù)樣本估計(jì)總體的思想,估計(jì)該校高二學(xué)生物理成績(jī)的平均數(shù)和中位數(shù);
(3)成績(jī)?cè)?0分以上(含80分)為優(yōu)秀,樣本中成績(jī)落在中的男、女生人數(shù)比為1:2,成績(jī)落在中的男、女生人數(shù)比為3:2,完成列聯(lián)表,并判斷是否所有95%的把握認(rèn)為物理成績(jī)優(yōu)秀與性別有關(guān).
參考公式和數(shù)據(jù):
0.50 | 0.05 | 0.025 | 0.005 | |
0.455 | 3.841 | 5.024 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AM與直線相切,且與圓N:外切
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)點(diǎn)O為坐標(biāo)原點(diǎn),過曲線C外且不在y軸上的點(diǎn)P作曲線C的兩條切線,切點(diǎn)分別記為A,B,當(dāng)直線與的斜率之積為時(shí),求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 是上一點(diǎn),且.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下說法:
①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;
②設(shè)有一個(gè)回歸方程,變量增加1個(gè)單位時(shí),平均增加5個(gè)單位
③線性回歸方程必過
④設(shè)具有相關(guān)關(guān)系的兩個(gè)變量的相關(guān)系數(shù)為,那么越接近于0,之間的線性相關(guān)程度越高;
⑤在一個(gè)列聯(lián)表中,由計(jì)算得的值,那么的值越大,判斷兩個(gè)變量間有關(guān)聯(lián)的把握就越大。
其中錯(cuò)誤的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y,z均為正數(shù).
(1)若xy<1,證明:|x+z||y+z|>4xyz;
(2)若=,求2xy2yz2xz的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,若對(duì)于t∈R,f(t)≤kt恒成立,則實(shí)數(shù)k的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,判斷函數(shù)的單調(diào)性并說明理由;
(2)若,求證:關(guān)的不等式在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某北方村莊4個(gè)草莓基地,采用水培陽光栽培方式種植的草莓個(gè)大味美,一上市便成為消費(fèi)者爭(zhēng)相購(gòu)買的對(duì)象.光照是影響草莓生長(zhǎng)的關(guān)鍵因素,過去50年的資料顯示,該村莊一年當(dāng)中12個(gè)月份的月光照量X(小時(shí))的頻率分布直方圖如下圖所示(注:月光照量指的是當(dāng)月陽光照射總時(shí)長(zhǎng)).
(1)求月光照量(小時(shí))的平均數(shù)和中位數(shù);
(2)現(xiàn)準(zhǔn)備按照月光照量來分層抽樣,抽取一年中的4個(gè)月份來比較草莓的生長(zhǎng)狀況,問:應(yīng)在月光照量,,的區(qū)間內(nèi)各抽取多少個(gè)月份?
(3)假設(shè)每年中最熱的5,6,7,8,9,10月的月光照量是大于等于240小時(shí),且6,7,8月的月光照量是大于等于320小時(shí),那么,從該村莊2018年的5,6,7,8,9,10這6個(gè)月份之中隨機(jī)抽取2個(gè)月份的月光照量進(jìn)行調(diào)查,求抽取到的2個(gè)月份的月光照量(小時(shí))都不低于320的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com