【題目】已知函數(shù)f(x)=x2+1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)用定義法證明函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).

【答案】
(1)解:∵函數(shù)f(x)=x2+1,

∴f(x)的定義域?yàn)镽,

∵f(﹣x)=(﹣x)2+1=x2+1=f(x),

∴函數(shù)f(x)是R上的偶函數(shù)


(2)證明:在(0,+∞)上任意選取x1,x2,且x1<x2,

f(x1)﹣f(x2)= =(x1﹣x2)(x1+x2),

∵x1>0,x2>0,x1<x2,

∴x1﹣x2<0,x1+x2>0,

∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),

∴函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).


【解析】(1)求出f(x)的定義域?yàn)镽,f(﹣x)=f(x),從而得到函數(shù)f(x)是R上的偶函數(shù).(2)在(0,+∞)上任意選取x1 , x2 , 且x1<x2 , 推導(dǎo)出f(x1)﹣f(x2)<0,由此能證明函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).
【考點(diǎn)精析】利用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性對(duì)題目進(jìn)行判斷即可得到答案,需要熟知單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)“亂點(diǎn)鴛鴦譜”節(jié)目:每次邀請(qǐng)四對(duì)青年夫妻,先由每人隨機(jī)抽簽獲得順序展示才藝,再由觀眾通過投票的方式實(shí)施男女配對(duì)(觀眾不知道他們的真實(shí)配對(duì)情況).

(Ⅰ)求正確配對(duì)家庭數(shù)的期望;

(Ⅱ)設(shè)有對(duì)夫妻,記他們完全錯(cuò)位的配對(duì)種類總數(shù)為.

①求, , ;

②推導(dǎo) , 所滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,每個(gè)側(cè)面均為正方形, 為底邊的中點(diǎn), 為側(cè)棱上的點(diǎn),且滿足平面.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)f(x)=ax2+bx+c的圖象頂點(diǎn)坐標(biāo)為(﹣1,﹣4)且f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= ,畫出函數(shù)g(x)圖象并求單調(diào)區(qū)間;
(3)求函數(shù)g(x)在[﹣3,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體中, 是平行四邊形, 是矩形, , .

(Ⅰ)求證:平面平面

(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品店為了了解氣溫對(duì)銷售量的影響,隨機(jī)記錄了該店1月份中5天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位: )的數(shù)據(jù),如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回歸方程;

2)判斷之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6,請(qǐng)用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額.

: 回歸方程 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=loga (a>0,且a≠1).
(1)證明f(x)為奇函數(shù);
(2)求使f(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)在(0,+∞)上單調(diào)遞增的是(
A.
B.y=(x﹣1)2
C.y=21x
D.y=lg(x+3)

查看答案和解析>>

同步練習(xí)冊(cè)答案