設(shè)橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為
(1)求橢圓方程;
(2)過點的直線與橢圓交于不同的兩點,當面積最大時,求
(1);(2).

試題分析:(1)由離心率和點.用待定系數(shù)法求出橢圓的方程.(2)利用點到直線的距離公式求出高及弦長公式求出弦長.分式形式的最值的求法要記牢.本題是對橢圓的基礎(chǔ)知識的測試.
試題解析:(1)由題意可得,又,解得,
所以橢圓方程為
(2)根據(jù)題意可知,直線的斜率存在,故設(shè)直線的方程為,設(shè)由方程組消去得關(guān)于的方程
由直線與橢圓相交于兩點,則有,即
得:    由根與系數(shù)的關(guān)系得
  又因為原點到直線的距離,故的面積
,所以當且僅當時等號成立,
時,.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某校同學設(shè)計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線焦點的兩條弦,且其焦點,,點軸上一點,記,其中為銳角.

(1)求拋物線方程;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左右兩焦點分別為是橢圓上一點,且在軸上方,

(1)求橢圓的離心率的取值范圍;
(2)當取最大值時,過的圓的截軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準線上任一點引圓的兩條切線,切點分別為.試探究直線是否過定點?若過定點,請求出該定點;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知頂點在原點,焦點在軸上的拋物線過點.
(1)求拋物線的標準方程;
(2)若拋物線與直線交于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點.
(1)求證:OA⊥OB;
(2)當DAOB的面積等于時,求k的值. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的離心率為,以橢圓的左頂點為圓心作圓,設(shè)圓與橢圓交于點與點.(12分)

(1)求橢圓的方程;(3分)
(2)求的最小值,并求此時圓的方程;(4分)
(3)設(shè)點是橢圓上異于,的任意一點,且直線分別與軸交于點,為坐標原點,求證:為定值.(5分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.

(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓以坐標軸為對稱軸,且經(jīng)過點、.記其上頂點為,右頂點為.
(1)求圓心在線段上,且與坐標軸相切于橢圓焦點的圓的方程;
(2)在橢圓位于第一象限的弧上求一點,使的面積最大.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

長為2的線段的兩個端點在拋物線上滑動,則線段中點軸距離的最小值是          

查看答案和解析>>

同步練習冊答案