(本小題滿分13分)

設函數(shù)的導函數(shù)為,且

(Ⅰ)求函數(shù)的圖象在x=0處的切線方程;

(Ⅱ)求函數(shù)的極值。

 

【答案】

(Ⅰ)(Ⅱ)當x=-3時,有極大值27;當x=1時,有極小值-5

【解析】

試題分析:(Ⅰ)因為,          1分

所以由,得a=3,                  3分

。

所以,                 4分

所以函數(shù)的圖象在x=0處的切線方程為。      6分

(Ⅱ)令,得x=-3或x=1。      7分

當x變化時,的變化情況如下表:

x

(-∞,-3)

-3

(-3,1)

1

(1,+∞)

+

0

0

+

27

-5

                        11分

即函數(shù)在(-∞,-3)上單調(diào)遞增,在(-3,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增。

所以當x=-3時,有極大值27;當x=1時,有極小值-5。     13分

考點:導數(shù)的幾何意義及用導數(shù)求函數(shù)極值

點評:函數(shù)在某點處的導數(shù)等于該點處的切線斜率,求函數(shù)極值先要通過導數(shù)求的極值點及單調(diào)區(qū)間,從而確定是極大值還是極小值

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習冊答案