【題目】為了提高職工的工作積極性,在工資不變的情況下,某企業(yè)給職工兩種追加獎(jiǎng)勵(lì)性績(jī)效獎(jiǎng)金的方案:第一種方案 是每年年末(12月底)追加績(jī)效獎(jiǎng)金一次,第一年末追加的績(jī)效獎(jiǎng)金為萬(wàn)元,以后每次所追加的績(jī)效獎(jiǎng)金比上次所追加的績(jī)效獎(jiǎng)金多萬(wàn)元;第二種方案是每半年(6月底和12月底)各追加績(jī)效獎(jiǎng)金一次,第一年的6月底追加的績(jī)效獎(jiǎng)金為萬(wàn)元,以后每次所追加的績(jī)效獎(jiǎng)金比上次所追加的績(jī)效獎(jiǎng)金多萬(wàn)元.
假設(shè)你準(zhǔn)備在該企業(yè)工作年,根據(jù)上述方案,試問:
(1)如果你在該公司只工作2年,你將選擇哪一種追加績(jī)效獎(jiǎng)金的方案?請(qǐng)說明理由.
(2)如果選擇第二種追加績(jī)效獎(jiǎng)金的方案比選擇第一種方案的獎(jiǎng)金總額多,你至少在該企業(yè)工作幾年?
(3)如果把第二種方案中的每半年追加萬(wàn)元改成每半年追加萬(wàn)元,那么在什么范圍內(nèi)取值時(shí),選擇第二種方案的績(jī)效獎(jiǎng)金總額總是比選擇第一種方案多?
【答案】(1)見解析;(2)至少在該公司工作3年;(3).
【解析】
(1)將兩種方案可得獎(jiǎng)金分別計(jì)算出來(lái),比較得出結(jié)論;
(2)根據(jù)規(guī)則計(jì)算出第年末,兩種方案所得獎(jiǎng)金總額,得到不等式,解得;
(3)根據(jù)規(guī)則計(jì)算出第年末,兩種方案所得獎(jiǎng)金總額,得到不等式,參變分離,求出的取值范圍.
解:(1)第2年末,依第一方案得到的獎(jiǎng)金總額為
(萬(wàn)元).
依第二方案得到的獎(jiǎng)金總額為
(萬(wàn)元).
在該公司工作2年,選擇第一方案和選擇第二方案得到的績(jī)效獎(jiǎng)金一樣多
(2)第年末,依第一方案得到的獎(jiǎng)金總額為:(萬(wàn)元)
依第二方案得到的獎(jiǎng)金總額為:
由題意得:,
解得:,
因?yàn)?/span>,所以,
所以至少在該公司工作3年才能保證選擇第二種追加績(jī)效獎(jiǎng)金的方案比選擇第一種方案的獎(jiǎng)金總額多.
(3)第年末,依第一方案,得到的績(jī)效獎(jiǎng)金總額為(萬(wàn)元),
依第二方案,得到的績(jī)效獎(jiǎng)金總額為
由題意對(duì)所有正整數(shù)恒成立,
即對(duì)所有正整數(shù)恒成立,
因?yàn)?/span>
所以當(dāng)萬(wàn)元時(shí),選擇第二種方案總是比選擇第一種方案的績(jī)效獎(jiǎng)金總額多.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過點(diǎn),且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)斜率為的直線交橢圓于,兩點(diǎn),且.若直線上存在點(diǎn)P,使得是以為頂角的等腰直角三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行優(yōu)惠促銷,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種:方案一:每滿200元減50元;方案二:每滿200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、1個(gè)白球的甲箱,裝2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
(1)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得優(yōu)惠的概率;
(2)若某顧客選擇方案二,請(qǐng)分別計(jì)算該顧客獲得半價(jià)優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠的概率;
(3)若小明的購(gòu)物金額為320元,你覺得小明應(yīng)該選取哪個(gè)方案,為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)為,是橢圓上半部分的動(dòng)點(diǎn),連接和長(zhǎng)軸的左右兩個(gè)端點(diǎn)所得兩直線交正半軸于兩點(diǎn)(點(diǎn)在的上方或重合).
(1)當(dāng)面積最大時(shí),求橢圓的方程;
(2)當(dāng)時(shí),在軸上是否存在點(diǎn)使得為定值,若存在,求點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)中,底面是邊長(zhǎng)為的等邊三角形,上、下底面的面積之比為,側(cè)面底面,并且.
(1)平面平面,證明:;
(2)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體、分別是棱AB、BC的中點(diǎn).
(1)證明四點(diǎn)共面;
(2)直線與平面所成角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com