【題目】如圖,在某港口處獲悉,其正東方向距離20n mile的處有一艘漁船遇險等待營救,此時救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線前往B處營救漁船.

(1)求接到救援命令時救援船距漁船的距離;

(2)試問救援船在C處應(yīng)朝北偏東多少度的方向沿直線前往B處救援?(已知

【答案】見解析

解析1由題意,,AB20,AC10,CAB120°,

-2AB·ACcosCAB,

-2×20×10cos 120°700,BC10,

接到救援命令時救援船距漁船的距離為10n mile.6分)

2,AB20,BC10,CAB120°,

由正弦定理,,,.9分)

,∴∠ACB41°,

故救援船應(yīng)沿北偏東71°的方向救援.12分)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學生進行了問卷調(diào)查,得到如下列聯(lián)表(平均每天喝500ml以上為常喝,體重超過50kg為肥胖):

常喝

不常喝

合計

肥胖

2

不肥胖

18

合計

30

已知在全部30人中隨機抽取1人,抽到肥胖的學生的概率為
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為肥胖與常喝碳酸飲料有關(guān)?說明你的理由;
(3)現(xiàn)從常喝碳酸飲料且肥胖的學生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著社會發(fā)展,淮北市在一天的上下班時段也出現(xiàn)了堵車嚴重的現(xiàn)象。交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴重擁堵.早高峰時段(T≥3 ),從淮北市交通指揮中心隨機選取了一至四馬路之間50個交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:

(I)據(jù)此直方圖估算交通指數(shù)T∈[4,8)時的中位數(shù)和平均數(shù);

(II)據(jù)此直方圖求出早高峰一至四馬路之間的3個路段至少有2個嚴重擁堵的概率是多少?

(III)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴重擁堵為60分鐘,求此人用時間的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在某港口處獲悉,其正東方向距離20n mile的處有一艘漁船遇險等待營救,此時救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線前往B處營救漁船.

(1)求接到救援命令時救援船距漁船的距離;

(2)試問救援船在C處應(yīng)朝北偏東多少度的方向沿直線前往B處救援?(已知

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】樣本a1 , a2 , a3 , …,a10的平均數(shù)為 ,樣本b1 , b2 , b3 , …,b10的平均數(shù)為 ,那么樣本a1 , b1 , a2 , b2 , …,a10 , b10的平均數(shù)為( )
A.+
B. +
C.2( +
D. +

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處的切線平行于直線,求a的值;

(2)討論函數(shù)的單調(diào)性;

(3) 若,且對時,恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin( x+φ),x∈R,A>0,0<φ< .y=f(x)的部分圖象如圖所示,P、Q 分別為該圖象的最高點和最低點,點P的坐標為(1,A).點R的坐標為(1,0),∠PRQ=

(1)求f(x)的最小正周期以及解析式.
(2)用五點法畫出f(x)在x∈[﹣ , ]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個變量關(guān)于的回歸方程模型,其對應(yīng)的數(shù)值如下表:

2

3

4

5

6

7

(1)請用相關(guān)系數(shù)加以說明之間存在線性相關(guān)關(guān)系(當時,說明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預測當時,對應(yīng)的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

,相關(guān)系數(shù)公式為:.

參考數(shù)據(jù):

,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為實數(shù))的圖像在點處的切線方程為.

(1)求實數(shù)的值及函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),證明時, .

查看答案和解析>>

同步練習冊答案