【題目】已知定義在上的奇函數(shù)滿足,且在上是增函數(shù);
定義行列式; 函數(shù) (其中).
(1) 證明: 函數(shù)在上也是增函數(shù);
(2) 若函數(shù)的最大值為4,求的值;
(3) 若記集合M={m|恒有g()<0},,求.
【答案】(1)見解析(2)(3)=(,)
【解析】分析:(1)先作差,利用奇偶性化簡得差的符號,最后根據(jù)單調(diào)性定義得結(jié)論,(2)先根據(jù)定義得,根據(jù)平方關(guān)系化為二次函數(shù),根據(jù)二次函數(shù)性質(zhì)求最值,解得的值;(3)先根據(jù)單調(diào)性確定N,再求,轉(zhuǎn)化為g()<-2恒成立,根據(jù)變量分離法得,,再根據(jù)基本不等式求最值,即得結(jié)果.
詳解:
解(1) 證明:任取, 則
且在上是增函數(shù),,又為奇函數(shù)
故
即,函數(shù)在上也是增函數(shù);
(2)
的最大值只可能在,或,或處取到.
若,,則有,此時,符合;
若,,則有,此時,不符合;
若,,則有或
此時或, 不符合 .
.
(3) 是定義在上的奇函數(shù)且滿足
又在上均是增函數(shù),
由 得或
所以{m|恒有g()<-2}
即,對恒成立
故的最大值
,同理可證時,
t=時, 取最小值,
此時取最大值
所以m>即可。 故:=(,)
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分14分)
已知正項數(shù)列滿足:對任意正整數(shù),都有成等差數(shù)列,成等比數(shù)列,且
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ) 設(shè)如果對任意正整數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù) 在 處有極值 ,求 的值;
(2)若對于任意的 在 上單調(diào)遞增,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓 ,圓心為 ,定點 , 為圓 上一點,線段 上一點 滿足 ,直線 上一點 ,滿足 .
(Ⅰ)求點 的軌跡 的方程;
(Ⅱ) 為坐標原點, 是以 為直徑的圓,直線 與 相切,并與軌跡 交于不同的兩點 .當 且滿足 時,求 面積 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)綜》是明朝程大位所著數(shù)學名著,其中有這樣一段表述:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一”,其意大致為:有一七層寶塔,每層懸掛的紅燈數(shù)為上一層的兩倍,共有381盞燈,則塔從上至下的第三層有( )盞燈.
A.14
B.12
C.10
D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)和兩種產(chǎn)品,按計劃每天生產(chǎn)各不得少于10噸,已知生產(chǎn)產(chǎn)品噸需要用煤9噸,電4度,勞動力3個(按工作日計算).生產(chǎn)產(chǎn)品1噸需要用煤4噸,電5度,勞動力10個,如果產(chǎn)品每噸價值7萬元, 產(chǎn)品每噸價值12萬元,而且每天用煤不超過300噸,用電不超過200度,勞動力最多只有300個,每天應安排生產(chǎn)兩種產(chǎn)品各多少才是合理的?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研小組有20個不同的科研項目,每年至少完成一項。有下列兩種完成所有科研項目的計劃:
A計劃:第一年完成5項,從第一年開始,每年完成的項目不得少于次年,直到全部完成為止;
B計劃:第一年完成項數(shù)不限,從第一年開始,每年完成的項目不得少于次年,恰好5年完成所有項目。
那么,按照A計劃和B計劃所安排的科研項目不同完成順序的方案數(shù)量
A. 按照A計劃完成的方案數(shù)量多
B. 按照B計劃完成的方案數(shù)量多
C. 按照兩個計劃完成的方案數(shù)量一樣多
D. 無法判斷哪一種計劃的方案數(shù)量多
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是圓上任意一點,過作軸的垂線段, 為垂足.當點在圓上運動時,線段中點的軌跡為曲線(包括點和點),為坐標原點.
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線相切,且與圓相交于兩點,當的面積最大時,試求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com