【題目】已知函數(shù),

1)求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的方程在區(qū)間內(nèi)無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1)函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.(2

【解析】

1)求出導(dǎo)數(shù),然后由得增區(qū)間,得減區(qū)間.

2)在上,方程化為,求出導(dǎo)函數(shù),

時(shí),,因此對(duì)分類(lèi)討論,時(shí),恒成立,時(shí),有解,通過(guò)研究的單調(diào)性可得到的單調(diào)性,由零點(diǎn)存在定理確定有無(wú)零點(diǎn).綜合后可得結(jié)論.

1)依題意,

,解得,故函數(shù)的單調(diào)增區(qū)間是,

,得,單調(diào)減區(qū)間是

2)原方程可化為,即

,,則

是增函數(shù),時(shí),,

(ⅰ)當(dāng)時(shí),恒成立.

上是增函數(shù),,故原方程在內(nèi)無(wú)零點(diǎn).

(ⅱ)當(dāng)時(shí),由,時(shí),,當(dāng)時(shí),,故在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

在區(qū)間上恒小于0.∴,

下面討論的正負(fù);

,

,

的導(dǎo)函數(shù),

,上增函數(shù).

.即,又

由零點(diǎn)存在性定理知,原方程在上有零點(diǎn).即在上有零點(diǎn).

綜上所述,所求實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性.

(2)試問(wèn)是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在中,角的對(duì)邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱(chēng)之為塹堵,如圖,在塹堵ABCA1B1C1中,ABBC,AA1AB,塹堵的頂點(diǎn)C1到直線A1C的距離為m,C1到平面A1BC的距離為n,則的取值范圍是(

A.1,B.,C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢(shì):

下列敘述錯(cuò)誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好

D. 總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形是正方形,是正三角形,, ,.

(1)求證:平面

(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

1)從樣本中日平均生產(chǎn)件數(shù)不足60的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;

2)規(guī)定日平均生產(chǎn)件數(shù)不少于80的為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?

P

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)就業(yè)部從該校2018年畢業(yè)的且已就業(yè)的大學(xué)本科生中隨機(jī)抽取100人進(jìn)行問(wèn)卷調(diào)查,其中有一項(xiàng)是他們的月薪情況.經(jīng)調(diào)查發(fā)現(xiàn),他們的月薪在3000元到10000元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖:

若月薪在區(qū)間的左側(cè),則認(rèn)為該大學(xué)本科生屬就業(yè)不理想的學(xué)生,學(xué)校將聯(lián)系本人,咨詢?cè)滦竭^(guò)低的原因,從而為本科生就業(yè)提供更好的指導(dǎo)意見(jiàn).其中,分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差計(jì),計(jì)算可得元(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值代表).

1)現(xiàn)該校2018屆大學(xué)本科生畢業(yè)生張銘的月薪為3600元,試判斷張銘是否屬于就業(yè)不理想的學(xué)生?

2)為感謝同學(xué)們對(duì)這項(xiàng)調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前3組中抽取6人,各贈(zèng)送一份禮品,并從這6人中再抽取2人,各贈(zèng)送某款智能手機(jī)1部,求獲贈(zèng)智能手機(jī)的2人中恰有1人月薪不超過(guò)5000 元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,海南等8省公布了高考改革綜合方案將采取模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)必考,然后考生先在物理、歷史中選擇1門(mén),再在思想政治、地理、化學(xué)、生物中選擇2門(mén)為了更好進(jìn)行生涯規(guī)劃,甲同學(xué)對(duì)高一一年來(lái)的七次考試成績(jī)進(jìn)行統(tǒng)計(jì)分析,其中物理、歷史成績(jī)的莖葉圖如圖所示.

1)若甲同學(xué)隨機(jī)選擇3門(mén)功課,求他選到物理、地理兩門(mén)功課的概率;

2)試根據(jù)莖葉圖分析甲同學(xué)的物理和歷史哪一學(xué)科成績(jī)更穩(wěn)定.(不需計(jì)算)

3)甲同學(xué)發(fā)現(xiàn),其物理考試成績(jī)(分)與班級(jí)平均分(分)具有線性相關(guān)關(guān)系,統(tǒng)計(jì)數(shù)據(jù)如下表所示,試求當(dāng)班級(jí)平均分為50分時(shí),其物理考試成績(jī).(計(jì)算,時(shí)精確到0.01

(分)

57

61

65

72

74

77

84

(分)

76

82

82

85

87

90

93

參考數(shù)據(jù):,,,.

參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案