【題目】本題滿分14分

在數(shù)列中,,且.

() 求,猜想的表達式,并加以證明;

() 設,求證:對任意的自然數(shù),都有;

【答案】

解:(1)容易求得:,;

猜想, 證明:見解析.

(2)見解析.

【解析】本試題主要是考查了數(shù)列的歸納猜想的思想的運用,以及運用哦遞推關系式來求解數(shù)列的前幾項,并且能運用數(shù)學歸納法加以證明,同時對于構造的新數(shù)列也能利用裂項法求和的綜合運用。

(1)利用遞推關系,對于n賦值分別得到前幾項,并猜想其通項公式,運用數(shù)學歸納法加以證明

(2)根據(jù)上一問的結論,表示新數(shù)列的通項公式,然后利用裂項的思想求和并證明不等式問題。

解:(1)容易求得:----------------------(2分)

故可以猜想, 下面利用數(shù)學歸納法加以證明:

顯然當時,結論成立,-----------------(3分)

假設當;時(也可以),結論也成立,即

--------------------------(4分)

那么當時,由題設與歸納假設可知:

------------(6分)

即當時,結論也成立,綜上,對,成立。--------(7分)

(2)---(9分)

所以

---------(11分)

所以只需要證明

(顯然成立)

所以對任意的自然數(shù),都有-------(14分)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是我國南宋時期的數(shù)學家秦九韶提出的一種多項式f(x)=anxn+an1xn1+…+a1x+a0的求值問題的算法.現(xiàn)按照這個程序執(zhí)行函數(shù)f (x)=3x4﹣2x3﹣6x﹣17的計算,若輸入的值x0=2,則輸出的v的值是(

A.0
B.2
C.3
D.﹣3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結果如下:
(1)在4月份任取一天,估計西安市在該天不下雨的概率;
(2)西安市某學校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運行如圖所示的程序框圖,則輸出的S的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從1開始的自然數(shù)按如圖所示的規(guī)則排列,現(xiàn)有一個三角形框架在圖中上下或左右移動,使每次恰有九個數(shù)在此三角形內,則這九個數(shù)的和可以為( )

A.2097 B.2112 C.2012 D.2090

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.

1)當每輛車的月租金定為3600元時,能租出多少輛車?

2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:

算得, .

P(K2k0)

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

則參照附表,得到的正確結論應是( )

A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”

B. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”

C. 有99%以上的把握認為“愛好該項運動與性別有關”

D. 有99%以上的把握認為“愛好該項運動與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|lgx|﹣( x有兩個零點x1 , x2 , 則有(
A.x1x2<0
B.x1x2=1
C.x1x2>1
D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結束.除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是.假設各局比賽結果相互獨立.

1)分別求甲隊以3031,32獲勝的概率;

2)若比賽結果為3031,則勝利方得3分、對方得0分;若比賽結果為3:2,則勝利方得2分、對方得1.求甲隊得分X的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案