已知拋物線與直線相切于點(diǎn)
(Ⅰ)求的解析式;
(Ⅱ)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

(Ⅰ);  (Ⅱ)實(shí)數(shù)的取值范圍是

(Ⅰ)依題意,有
,
因此,的解析式為;     …………………6分
(Ⅱ)由)得),解之得

由此可得
,
所以實(shí)數(shù)的取值范圍是.   …………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知線段AB過(guò)軸上一點(diǎn),斜率為,兩端點(diǎn)A,B到軸距離之差為
(1)求以O(shè)為頂點(diǎn),軸為對(duì)稱軸,且過(guò)A,B兩點(diǎn)的拋物線方程;
(2)設(shè)Q為拋物線準(zhǔn)線上任意一點(diǎn),過(guò)Q作拋物線的兩條切線,切點(diǎn)分別為M,N,求證:直線MN過(guò)一定點(diǎn);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)拋物線L:的焦點(diǎn)F的直線l交此拋物線于A、B兩點(diǎn),
①求;
②記坐標(biāo)原點(diǎn)為O,求△OAB的重心G的軌跡方程.
③點(diǎn)為拋物線L上一定點(diǎn),M、N為拋物線上兩個(gè)動(dòng)點(diǎn),且滿足,當(dāng)點(diǎn)M、N在拋物線上運(yùn)動(dòng)時(shí),證明直線MN過(guò)定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)拋物線y2=2px(p>0)上一定點(diǎn)P(x0,y0)(y0>0)作兩條直線分別交拋物線于A(x1,y1)、B(x2,y2).
(1)求該拋物線上縱坐標(biāo)為的點(diǎn)到其焦點(diǎn)F的距離;
(2)當(dāng)PA與PB的斜率存在且傾斜角互補(bǔ)時(shí),求的值,并證明直線AB的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的準(zhǔn)線方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過(guò)其上一點(diǎn)的切線方程為為常數(shù)).
(I)求拋物線方程;
(II)斜率為的直線PA與拋物線的另一交點(diǎn)為A,斜率為的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿足,求證線段PM的中點(diǎn)在y軸上;
(III)在(II)的條件下,當(dāng)時(shí),若P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,拋物線y2=4x的頂點(diǎn)為O,點(diǎn)A的坐標(biāo)為(5,0),傾斜角為的直線l與線段OA相交(不經(jīng)過(guò)點(diǎn)O或點(diǎn)A)且交拋物線于M、N兩點(diǎn),求△AMN面積最大時(shí)直線l的方程,并求△AMN的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線過(guò)點(diǎn)(-11,13),則拋物線的標(biāo)準(zhǔn)方程是(    )
A.y2=xB.y2=-x
C.y2=-x或x2=yD.x2=-y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)拋物線焦點(diǎn)的直線交拋物線于兩點(diǎn),已知,為原點(diǎn),
重心的縱坐標(biāo)為                。

查看答案和解析>>

同步練習(xí)冊(cè)答案