【題目】已知曲線.

(1)當(dāng)時(shí),求曲線在處的切線方程;

2)過點(diǎn)作曲線的切線,若所有切線的斜率之和為1,求的值.

【答案】(I) ;(Ⅱ) .

【解析】試題分析:(1)根據(jù)曲線的解析式求出導(dǎo)函數(shù),的橫坐標(biāo)代入導(dǎo)函數(shù)中即可求出切線的斜率根據(jù)點(diǎn)斜式可得切線的方程;(2)設(shè)出曲線過點(diǎn)切線方程的切點(diǎn)坐標(biāo),把切點(diǎn)的橫坐標(biāo)代入到(1)求出的導(dǎo)函數(shù)中即可表示出斜率,根據(jù)切點(diǎn)坐標(biāo)和表示出的斜率,寫出切線的方程,把的坐標(biāo)代入切線方程即可得到關(guān)于切點(diǎn)橫坐標(biāo)的方程,解方程方即可得到切點(diǎn)橫坐標(biāo)的值,分別代入所設(shè)的切線方程即可的結(jié)果.

試題解析:()當(dāng)a1時(shí), ,f'x)=x21,

∴kf'2)=413

,

所以切線方程為,整理得9x3y100

)設(shè)曲線的切點(diǎn)為(x0,y0),則,

所以切線方程為

又因?yàn)榍悬c(diǎn)x0y0)既在曲線fx)上,又在切線上,所以聯(lián)立得

可得x00x03,

所以兩切線的斜率之和為a+(9a)=92a1,∴a4

【方法點(diǎn)晴】本題主要考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)求曲線切線,屬于中檔題.求曲線切線方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點(diǎn) 出的切線斜率(當(dāng)曲線處的切線與軸平行時(shí),在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當(dāng)x為何值時(shí),f(logax)有最小值?求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2 . (Ⅰ)判斷f(x)奇偶性并證明;
(Ⅱ)用單調(diào)性定義證明函數(shù)g(x)= 在函數(shù)f(x)定義域內(nèi)單調(diào)遞增,并判斷f(x)=log2 在定義域內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若α∈[0,π],β∈[﹣ ],λ∈R,且(α﹣ 3﹣cosα﹣2λ=0,4β3+sinβcosβ+λ=0,則cos( +β)的值為(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( , )內(nèi)有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,正確的是(  )
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A={x|kx2﹣2x﹣1=0}只有一個(gè)元素,則實(shí)數(shù)k的取值集合為(
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1,C2的極坐標(biāo)方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點(diǎn)O)三點(diǎn)A,B,C.

)求證: ;

)當(dāng)時(shí),求點(diǎn)B到曲線C2上的點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求參數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案