若x∈(-∞,1),則函數(shù)y=
x2-2x+2
2x-2
有(  )
A、最小值1B、最大值1
C、最大值-1D、最小值-1
分析:函數(shù)f(x)進(jìn)行化簡變形,然后利用均值不等式求出最值,注意條件:“一正二定三相等”.
解答:解:y=
(x-1)2
2x-2
+
1
2x-2
=
x-1
2
+
1
2(x-1)
≤-2
1-x
2
1
2(1-x)
=-1,
故選C.
點(diǎn)評(píng):考查了利用基本不等式求函數(shù)的值域,要注意到條件:“一正二定三相等”,同時(shí)要靈活運(yùn)用不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

例4.若x∈(0,1),a>0且a≠1,求證:|loga(1-x)|>loga(1+x)|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x+2.
(1)求出函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若x∈(-2,1],求出f(x)的最大值和最小值;
(3)根據(jù)實(shí)數(shù)k的不同值,討論方程f(x)-k=0實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+(a+1)x+a
x
(x>0,a是大于零的常數(shù))

(1)求證:b≤(
a
+1)2
是f(x)≥b的充要條件;
(2)若x∈(0,1]時(shí),f(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx,g(x)=px-
x36

(I)若y=f(x)與y=g(x)在(0,0)處有相同的切線,求p的值
(II)在(I)的條件下,求證:當(dāng)x∈(0,1)時(shí),f(x)>g(x)恒成立
(III)若x∈(0,1)時(shí)f(x)>g(x)恒成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•武漢模擬)若x,y滿足
1≤x+y≤3
-1≤x-y≤1
,則x2+y2
的取值范圍為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案