【題目】把函數(shù)y=cos2x+ sin2x的圖象向左平移m(其中m>0)個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則m的最小值是( )
A.
B.
C.
D.
【答案】B
【解析】解:把函數(shù)y=cos2x+ sin2x=2sin(2x+ )的圖象向左平移m(其中m>0)個(gè)單位,可得y=2sin[2(x+m)+ ]=2sin(2x+2m+ )的圖象,
所得圖象關(guān)于y軸對(duì)稱,則2m+ =kπ+ ,k∈Z,即 m=kπ+ ,故正數(shù)m的最小值是 ,
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,且離心率為.
(1)求橢圓方程;
(2)斜率為的直線過點(diǎn),且與橢圓交于兩點(diǎn), 為直線上的一點(diǎn),若△為等邊三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC.
(Ⅰ)若a=b,求cosB;
(Ⅱ)設(shè)B=90°,且a= , 求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的年固定成本為150萬元,每生產(chǎn)千件,需另投入成本為 (萬元), .每件產(chǎn)品售價(jià)為500元.該新產(chǎn)品在市場(chǎng)上供不應(yīng)求可全部賣完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)當(dāng)年產(chǎn)量為多少千件時(shí),該公司在這一新產(chǎn)品的生產(chǎn)中所獲利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣mx+m,m、x∈R.
(1)若關(guān)于x的不等式f(x)>0的解集為R,求m的取值范圍;
(2)若實(shí)x1 , x2數(shù)滿足x1<x2 , 且f(x1)≠f(x2),證明:方程f(x)= [f(x1)+f(x2)]至少有一個(gè)實(shí)根x0∈(x1 , x2);
(3)設(shè)F(x)=f(x)+1﹣m﹣m2 , 且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量主要受污染物排放量及大氣擴(kuò)散等因素的影響,某市環(huán)保監(jiān)測(cè)站2014年10月連續(xù)10天(從左到右對(duì)應(yīng)1號(hào)至10號(hào))采集該市某地平均風(fēng)速及空氣中氧化物的日均濃度數(shù)據(jù),制成散點(diǎn)圖如圖所示.
(Ⅰ)同學(xué)甲從這10天中隨機(jī)抽取連續(xù)5天的一組數(shù)據(jù),計(jì)算回歸直線方程.試求連續(xù)5天的一組數(shù)據(jù)中恰好同時(shí)包含氧化物日均濃度最大與最小值的概率;
(Ⅱ)現(xiàn)有30名學(xué)生,每人任取5天數(shù)據(jù),對(duì)應(yīng)計(jì)算出30個(gè)不同的回歸直線方程.已知30組數(shù)據(jù)中有包含氧化物日均濃度最值的有14組.現(xiàn)采用這30個(gè)回歸方程對(duì)某一天平均風(fēng)速下的氧化物日均濃度進(jìn)行預(yù)測(cè),若預(yù)測(cè)值與實(shí)測(cè)值差的絕對(duì)值小于2,則稱之為“擬合效果好”,否則為“擬合效果不好”.根據(jù)以上信息完成下列2×2聯(lián)表,并分析是否有95%以上的把握說擬合效果與選取數(shù)據(jù)是否包含氧化物日均濃度最值有關(guān).
預(yù)測(cè)效果好 | 擬合效果不好 | 合計(jì) | |
數(shù)據(jù)有包含最值 | 5 | ||
數(shù)據(jù)無包含最值 | 4 | ||
合計(jì) |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ∥ ,求| ﹣ |
(2)若 與 夾角為銳角,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐ABCD﹣PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1.
(Ⅰ)求PD與BC所成角的大。
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A﹣PC﹣D的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com