從集合A={-1,1,2}中隨機(jī)選取一個(gè)數(shù)記為k,從集合B={-2,1,2}中隨機(jī)選取一個(gè)數(shù)記為b,則直線y=kx+b不經(jīng)過(guò)第三象限的概率為_(kāi)_______.
由題意,基本事件總數(shù)為3×3=9,其中滿(mǎn)足直線y=kx+b不經(jīng)過(guò)第三象限的,即滿(mǎn)足有k=-1,b=1或k=-1,b=2兩種,故所求的概率為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于的一次函數(shù)
(1)設(shè)集合,分別從集合中隨機(jī)取一個(gè)數(shù)作為,,求函數(shù)是增函數(shù)的概率;
(2)若實(shí)數(shù),滿(mǎn)足條件,求函數(shù)的圖象不經(jīng)過(guò)第四象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某中學(xué)為豐富教工生活,國(guó)慶節(jié)舉辦教工趣味投籃比賽,有兩個(gè)定點(diǎn)投籃位置,在點(diǎn)投中一球得2分,在點(diǎn)投中一球得3分。某規(guī)則是:按先的順序投籃,教師甲在點(diǎn)投中的概率分別是,且在兩點(diǎn)投中與否相互獨(dú)立。
(1)若教師甲投籃三次,試求他投籃得分的分布列和數(shù)學(xué)期望;
(2)若教師乙與教師甲在投中的概率相同,兩人按規(guī)則各投三次,求甲勝乙的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為,且乙投球次均未命中的概率為
(1)求乙投球的命中率
(2)若甲投球次,乙投球次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知X的分布列為P(X=k)=(k=1,2,…,6),其中c為常數(shù),則P(X≤2)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從-1、0、1、2這四個(gè)數(shù)中選出三個(gè)不同的數(shù)作為二次函數(shù)f(x)=ax2+bx+c的系數(shù)組成不同的二次函數(shù),其中使二次函數(shù)有兩個(gè)零點(diǎn)的概率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

隨機(jī)變量η的分布列如下:
η
1
2
3
4
5
6
P
0.2
x
0.35
0.1
0.15
0.2
則①x=     ;②P(η>3)=     ;
③P(1<η≤4)=     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

形狀如圖所示的三個(gè)游戲盤(pán)中(圖①是正方形,M,N分別是所在邊中點(diǎn),圖②是半徑分別為2和4的兩個(gè)同心圓,O為圓心,圖③是正六邊形,點(diǎn)P為其中心)各有一個(gè)玻璃小球,依次搖動(dòng)三個(gè)游戲盤(pán)后,將它們水平放置,就完成了一局游戲.

(1)一局游戲后,這三個(gè)盤(pán)中的小球都停在陰影部分的概率是多少?
(2)用隨機(jī)變量X表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒(méi)有停在陰影部分的事件數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從3臺(tái)甲型彩電和2臺(tái)乙型彩電中任取3臺(tái),其中兩種品牌的彩電齊全的概率是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案