【題目】已知數(shù)列{an}滿足Sn+an=2n+1.
(1)寫出a1 , a2 , a3 , 并推測an的表達式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.
【答案】
(1)解:當(dāng)n=1,時S1+a1=2a1=3
∴a1=
當(dāng)n=2時,S2+a2=a1+a2+a2=5
∴a2= ,
同樣令n=3,則可求出a3=
∴a1= ,a2= ,a3=
猜測an=2﹣
(2)解:①由(1)已得當(dāng)n=1時,命題成立;
②假設(shè)n=k時,命題成立,即ak=2﹣ ,
當(dāng)n=k+1時,a1+a2+…+ak+2ak+1=2(k+1)+1,
且a1+a2+…+ak=2k+1﹣ak
∴2k+1﹣ak+2ak+1=2(k+1)+1=2k+3,
∴2ak+1=2+2﹣ ,即ak+1=2﹣ ,
即當(dāng)n=k+1時,命題成立.
根據(jù)①②得n∈N+,an=2﹣ 都成立.
【解析】(1)取n=1,2,3,分別求出a1 , a2 , a3 , 然后仔細觀察,總結(jié)規(guī)律,猜測an的值.(2)用數(shù)學(xué)歸納法進行證明,①當(dāng)n=1時,命題成立;②假設(shè)n=k時,命題成立,即ak=2﹣ ,當(dāng)n=k+1時,a1+a2+…+ak+ak+1+ak+1=2(k+1)+1,ak+1=2﹣ ,當(dāng)n=k+1時,命題成立.故an=2﹣ 都成立.
【考點精析】本題主要考查了數(shù)列的通項公式和數(shù)學(xué)歸納法的定義的相關(guān)知識點,需要掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式;數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有(n≥2,n∈N*)個給定的不同的數(shù)隨機排成一個下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn.
(1)求p2的值;
(2)證明:pn>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點E.
(1)若D為AC的中點,證明:DE是⊙O的切線;
(2)若OA= CE,求∠ACB的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于R上的可導(dǎo)函數(shù)f(x),若a>b>1且有(x﹣1)f′(x)≥0,則必有( )
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個小組各10名學(xué)生的英語口語測試成績的莖葉圖如圖所示,現(xiàn)從這20名學(xué)生中隨機抽取一人,將“抽出的學(xué)生為甲小組學(xué)生”記為事件A;“抽出的學(xué)生英語口語測試成績不低于85分”記為事件B.則P(A|B)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:設(shè)為上的可導(dǎo)函數(shù),若為增函數(shù),則稱為上的凸函數(shù).
(1)判斷函數(shù)與是否為凸函數(shù);
(2)設(shè)為上的凸函數(shù),求證:若, ,則恒有成立;
(3)設(shè), , ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求f(x)的極值;
(2)試比較20162017與20172016的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin( ﹣φ)(0<φ< )的圖象經(jīng)過點(0,﹣1).
(1)求函數(shù)f(x)的對稱軸方程及相鄰兩條對稱軸間的距離d;
(2)設(shè)α、β∈[0, ],f(3α+ )= ,f(3β+2π)= ,求cos(α+β)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com