【題目】如圖給出了一個(gè)程序框圖,其作用是輸入x的值,輸出相應(yīng)的y值.若要使輸入的x值與輸出的y值相等,則這樣的x值有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】D
【解析】解:由程序框圖知:算法的功能是求y= 的值,
當(dāng)x>5時(shí),lnx+5=xlnx=x﹣5,∵函數(shù)y=x﹣5與y=lnx的圖象有兩個(gè)交點(diǎn),其中x>5的交點(diǎn)只有1個(gè),∴有1解;
當(dāng)2<x≤5時(shí), =xx=±1(舍去);
當(dāng)x≤2時(shí),x3=xx=0或1或﹣1,有三個(gè)解,
綜上滿足條件的x有4個(gè)解.
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解程序框圖(程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河北保定市上學(xué)期期末調(diào)研已知點(diǎn)到點(diǎn)的距離比到軸的距離大1

I)求點(diǎn)的軌跡的方程;

II)設(shè)直線 ,交軌跡、兩點(diǎn), 為坐標(biāo)原點(diǎn),試在軌跡部分上求一點(diǎn),使得的面積最大,并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若執(zhí)行如圖的程序框圖,輸出S的值為6,則判斷框中應(yīng)填入的條件是(

A.k<32?
B.k<65?
C.k<64?
D.k<31?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(lnx﹣2k)(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè) ,對(duì)任意x>0,證明:(x+1)g(x)<ex+ex2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)市場(chǎng)分析,某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量為10噸至25噸時(shí),月生產(chǎn)總成本(萬元)可以看出月產(chǎn)量(噸)的二次函數(shù),當(dāng)月產(chǎn)量為10噸時(shí),月生產(chǎn)成本為20萬元,當(dāng)月產(chǎn)量為15噸時(shí),月生產(chǎn)總成本最低至17.5萬元.

(I)寫出月生產(chǎn)總成本(萬元)關(guān)于月產(chǎn)量噸的函數(shù)關(guān)系;

(II)已知該產(chǎn)品銷售價(jià)為每噸1.6萬元,那么月產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn),并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為正方形的四棱錐P-ABCD,側(cè)棱PD⊥底面ABCDPD=DC,點(diǎn)E線段PC的中點(diǎn)

(1)求異面直線APBE所成角的大。

(2)若點(diǎn)F在線段PB上,使得二面角F-DE-B的正弦值,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠,則m+n的取值范圍為(
A.(0,4)
B.[0,4)
C.[0,4]
D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

2014年 2015年 2016年

根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )

A. 年接待游客量逐年增加

B. 月接待游客量逐月增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 的定義域是R,對(duì)于任意實(shí)數(shù) ,恒有,且當(dāng) 時(shí),

1求證: ,且當(dāng) 時(shí),有

2判斷 R上的單調(diào)性;

3設(shè)集合A,B,若A∩B,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案