【題目】是否存在實(shí)數(shù)a,使得函數(shù)y=cos2x+asinx+ 在閉區(qū)間[0,π]的最大值是0?若存在,求出對(duì)應(yīng)的a的值;若不存在,試說(shuō)明理由.

【答案】解:∵y=cos2x+asinx+ =﹣sin2x+asinx+ , 令sinx=t,t∈[0,1],
∴f(t)=﹣t2+at+ ,對(duì)稱軸為t= a,
①當(dāng)a≤0時(shí),函數(shù)f(t)在[0,1]上是減函數(shù),
∴f(t)的最大值是g(a)=f(0)= =0,解得a= ,不符合題意,
②當(dāng)a≥2時(shí),函數(shù)f(t)在[0,1]上是增函數(shù),
∴f(x)的最大值是g(a)=f(1)= =0,解得a= ,不符合題意,
③當(dāng)0<a<2時(shí),f(x)在x∈[0,1]的最大值是g( a)=f( a)= + =0,
解得a=﹣4(舍去),或a= .·
綜上,存在a= 時(shí),函數(shù)在閉區(qū)間[0,π]上的最大值是0
【解析】化簡(jiǎn)函數(shù)f(x),令sinx=t,t∈[0,1],求出f(t)在t∈[0,1]的最大值函數(shù)g(a),再令g(a)=0,求對(duì)應(yīng)a的值是否存在即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角函數(shù)的最值的相關(guān)知識(shí),掌握函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)是否存在實(shí)數(shù),使恒成立,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是圓上任意一點(diǎn),點(diǎn)的坐標(biāo)為,直線分別與線段交于兩點(diǎn),且.

1)求點(diǎn)的軌跡的方程;

2)直線與軌跡相交于兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn), ,判斷的面積是否為定值?若是,求出定值,若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為,短軸長(zhǎng)為,直線與橢圓交于兩點(diǎn).

1求橢圓的方程;

2若直線與圓相切,探究是否為定值,如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)如今,“網(wǎng)購(gòu)”一詞不再新鮮,越來(lái)越多的人已經(jīng)接受并喜歡了這種購(gòu)物方式,但隨之也出現(xiàn)了商品質(zhì)量不能保證與信譽(yù)不好等問(wèn)題,因此,相關(guān)管理部門制定了針對(duì)商品質(zhì)量與服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出成功交易200例,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì):對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.

(1)依據(jù)題中的數(shù)據(jù)完成下表,并通過(guò)計(jì)算說(shuō)明,能否有99.9%的把握認(rèn)為“商品好評(píng)與服務(wù)好評(píng)”有關(guān);

(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行了5次購(gòu)物,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量,求的分布列(概率用算式表示)、數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,

(Ⅰ)當(dāng) 時(shí), 恒成立,求的取值范圍;

(Ⅱ)當(dāng) 時(shí),研究函數(shù)的零點(diǎn)個(gè)數(shù);

(Ⅲ)求證: (參考數(shù)據(jù): ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,三棱柱中,側(cè)面 底面, ,且,O中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)求直線與平面所成角的正弦;

(Ⅲ)在上是否存在一點(diǎn),使得平面,若不存在,說(shuō)明理由;若存在,確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的方程為=1,A、B為橢圓C的左、右頂點(diǎn),P為橢圓C上不同于A、B的動(dòng)點(diǎn),直線x=4與直線PA、PB分別交于M、N兩點(diǎn);若D(7,0),則過(guò)D、M、N三點(diǎn)的圓必過(guò)x軸上不同于點(diǎn)D的定點(diǎn),其坐標(biāo)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是為參數(shù)).

(1)求直線和曲線的普通方程;

(2)設(shè)直線和曲線交于兩點(diǎn),求

查看答案和解析>>

同步練習(xí)冊(cè)答案