本小題滿分12分)
如圖,在棱長(zhǎng)為a的正方體ABCD—A1B1C1D1中,E、F分別為棱AB和BC的中點(diǎn),EF交BD于H。
(1)求二面角B1—EF—B的正切值;
(2)試在棱B1B上找一點(diǎn)M,使D1M⊥平面EFB1,并證明你的結(jié)論.
解:(1)連AC、B1H,則EF//AC,
∵AC⊥BD,所以BD⊥EF。
∵B1B⊥平面ABCD,所以B1H⊥EF,
∴∠B1HB為二面角B1—EF—B的平面角。 …………2分
在
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長(zhǎng)都是地面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn)。
(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E, 使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)如圖,四邊形是邊長(zhǎng)為的正方形,、分別是邊、上的點(diǎn)(M不與A、D重合),且,交于點(diǎn),沿將正方形折成直二面角
(1)當(dāng)平行移動(dòng)時(shí),的大小是否發(fā)生變化?試說(shuō)明理由;
(2)當(dāng)在怎樣的位置時(shí),、兩點(diǎn)間的距離最小?并求出這個(gè)最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省高三2月月考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)如圖,在多面體ABCDEF中,四邊形ABCD是矩形,AB∥EF,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD。
(1)求直線FD與平面ABCD所成的角;
(2)求點(diǎn)D到平面BCF的距離;
(3)求二面角B—FC—D的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年河南省輝縣市高一上學(xué)期第二次階段性考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn).
求證:(1)PA∥平面BDE;
(2)平面PAC平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年河南省輝縣市高一上學(xué)期第二次階段性考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中.
(1)求證:AC⊥平面B1BDD1;
(2)求三棱錐B-ACB1體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com