【題目】某賓館在裝修時,為了美觀,欲將客房的窗戶設(shè)計成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個區(qū)域,其中四邊形ABCD為中心在圓心的矩形,現(xiàn)計劃將矩形ABCD區(qū)域設(shè)計為可推拉的窗口.

(1)若窗口ABCD為正方形,且面積大于 m2(木條寬度忽略不計),求四根木條總長的取值范圍;
(2)若四根木條總長為6m,求窗口ABCD面積的最大值.

【答案】
(1)解:設(shè)一根木條長為xcm,則正方形的邊長為2 = ,

∵SABCD ,

∴4﹣x2 ,

∴x< ,

∵四根木條將圓分成9個區(qū)域,

∴x> ,

∴4 <x<2 ;


(2)解:設(shè)AB所在木條長為am,CD所在木條長為bm,

由條件,2a+2b=6,則a+b=3,

∵a,b∈(0,2),

∴b=3﹣a∈(0,2),∴a,b∈(1,2).

∵AB=2 ,BD=2

∴SABCD=4 = = ,

當且僅當a=b= ∈(1,2)時,SABCD= ,

答:窗口ABCD面積的最大值為


【解析】(1)求出正方形的邊長,可得正方形的面積,利用面積大于 m2 , 即可求四根木條總長的取值范圍;(2)設(shè)AB所在木條長為am,CD所在木條長為bm,求出AB,BD,可得窗口ABCD面積,利用基本不等式求窗口ABCD面積的最大值.
【考點精析】利用基本不等式在最值問題中的應(yīng)用對題目進行判斷即可得到答案,需要熟知用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(x+4)=f(x),且當x∈[﹣2,0]時,f(x)=( x﹣6,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,求實數(shù)a的取值范圍是(
A.(1,2)
B.(2,+∞)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察以下各等式:

tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°,

tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°,

tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°.

分析上述各式的共同特點,猜想出表示的一般規(guī)律,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導(dǎo)函數(shù)),若方程g(f(x))=0有四個不等的實根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C1:(x﹣1)2+y2=2,圓C2:(x﹣m)2+(y+m)2=m2 . 圓C2上存在點P滿足:過點P向圓C1作兩條切線PA,PB,切點為A,B,△ABP的面積為1,則正數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))以原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為 .若直線l與曲線C交于A,B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間(單位:h)的樣本數(shù)據(jù).

(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學(xué)生每周平均體育運動時間超過4 h的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4 h,請完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”?

男生

女生

總計

每周平均體育運動時間不超過4h

每周平均體育運動時間超過4h

總計

附:

P(K2≥k0)

0.100

0.050

0.010

0.005

k0

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知pq

1)若pq充分不必要條件,求實數(shù)的取值范圍;

2)若p”q”的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知非空集合M滿足M{0,1,2,…,n}(n≥2,n∈N+).若存在非負整數(shù)k(k≤n),使得當a∈M時,均有2k﹣a∈M,則稱集合M具有性質(zhì)P.設(shè)具有性質(zhì)P的集合M的個數(shù)為f(n).
(1)求f(2)的值;
(2)求f(n)的表達式.

查看答案和解析>>

同步練習(xí)冊答案