【題目】已知橢圓C: =1(a>b>0)的左焦點為F,直線y=kx(k>0)與橢圓C交于A,B兩點,若 ,則C的離心率取值范圍為(
A.
B.
C.
D.

【答案】B
【解析】解:設F2是橢圓的右焦點,由AF⊥BF, ∵O點為AB的中點,丨OF丨=丨OF2丨,則四邊形AFBF2是平行四邊形,
∴四邊形AFBF2是矩形.
如圖所示設∠ABF=θ,則丨BF丨=2ccosθ,丨BF2丨=丨AF丨=2csinθ,
丨BF丨+丨BF2丨=2a,
∴2ccosθ+2csinθ=2a,
∴e= ,
sinθ+cosθ= sin(θ+ ),
∵θ∈(0, ],
∴θ+ ∈( , ],則sin(θ+ )∈( ),
sin(θ+ )∈(1, ),
∴e∈[ ,1).
故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設F1 , F2是橢圓 (0<b<2)的左、右焦點,過F1的直線l交橢圓于A,B兩點,若|AF2|+|BF2|最大值為5,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系中橢圓C的方程為ρ2= ,以極點為原點,極軸為x軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(1)若橢圓上任一點坐標為P(x,y),求 的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補,求證:|QA||QB|=|QC||QD|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD,ADDCCB1,∠BCD120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF1

1)求證:AD⊥平面BFED;

2)已知點P在線段EF上,2.求三棱錐EAPD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,過F作平行于x軸的直線交拋物線于A,B兩點(AB的左側),若△AOB的面積為2.

(1)求拋物線C的方程;

(2)P是拋物線C的準線上一點,Q是拋物線上的一點,若PF⊥QF,求證:直線PQ與拋物線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,實數(shù)a>0.
(Ⅰ)若a=2時,求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若x>0時,不等式f(x)<0恒成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正實數(shù)x,y滿足 +2y﹣2=lnx+lny,則xy=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知曲線C1y=(x>0)及曲線C2y= (x>0).C1上的點Pn的橫坐標為an過C1上的點Pn(n∈N)作直線平行于x軸,交曲線C2于點Qn,再過點Qn作直線平行于y軸,交曲線C1于點Pn+1.

試求an+1與an之間的關系,并證明a2n-1<<a2n(n∈N).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個月.經(jīng)氣象局統(tǒng)計,北京市從1月1日至1月30日的30天里有26天出現(xiàn)霧霾天氣,《環(huán)境空氣質量指數(shù)(AQI)技術規(guī)定(試行)》將空氣質量指數(shù)分為六級,其中,中度污染(四級)指數(shù)為151~200;重度污染(五級)指數(shù)為201~300;嚴重污染(六級)指數(shù)大于300.下面表1是某觀測點記錄的4天里AQI指數(shù)M與當天的空氣水平可見度y(千米)的情況,表2是某氣象觀測點記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)的統(tǒng)計結果.

表1 

AQI指數(shù)M

900

700

300

100

空氣可見度y/千米

0.5

3.5

6.5

9.5

表2 

AQI指數(shù)

[0,200]

(200,400]

(400,600]

(600,800]

(800,1000]

頻數(shù)

3

6

12

6

3

(1)設變量x=,根據(jù)表1的數(shù)據(jù),求出y關于x的線性回歸方程;

(2)根據(jù)表2估計這30天AQI指數(shù)的平均值.

查看答案和解析>>

同步練習冊答案