下列四個函數(shù)中,在(0,+∞)上是減函數(shù)的是(  )
A、f(x)=x+3
B、f(x)=(x-1)2
C、f(x)=
1
x
+1
D、f(x)=|x|
考點:函數(shù)單調性的判斷與證明
專題:函數(shù)的性質及應用
分析:根據(jù)一次函數(shù),二次函數(shù),反比例函數(shù),絕對值函數(shù)的單調性,分別判斷四個函數(shù)的在(0,+∞)上的單調性,可得答案
解答: 解:A中,f(x)=x+3在(0,+∞)上是增函數(shù),不滿足要求;
B中,f(x)=(x-1)2在(0,+∞)上是增函數(shù),不滿足要求;
C中,f(x)=
1
x
+1在(0,+∞)上是減函數(shù),滿足要求;
在中,f(x)=|x|在(0,+∞)上是增函數(shù),不滿足要求;
故選:C
點評:本題考查復合函數(shù)的單調性、指數(shù)函數(shù)、對數(shù)函數(shù)及一次函數(shù)的性質,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,E是A1B1的中點,則直線與AE與平面ABC1D1所成角的正弦值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
(1)方程x=
y2-1
表示雙曲線的一部分;
(2)動點到兩個定點的距離之和為定長,則動點的軌跡為橢圓;
(3)動點M與點F(0,-2)的距離比它到直線l:y-3=0的距離小1的軌跡方程是x2=-8y
(4)若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)分為“上、下、左、右”四個區(qū)域(不含邊界),若點(1,2)在“上”區(qū)域內,則雙曲線的離心率e的取值范圍是(1,
5
);
正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)x滿足log2x=2+sinθ,則|x+1|+|x-10|的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCDA1B1C1D1中,E、F、G、H分別為AA1、AB、BB1、BC1的中點,則異面直線EF與GH所成的角等于( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)如圖所示各圖中三角形的個數(shù),推斷第10個圖中三角形的個數(shù)是( 。
A、60B、62C、65D、66

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知sinB=2sin(B+C)cosC,那么△ABC一定是(  )
A、等腰直角三角形
B、等腰三角形
C、直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點S,A,B,C是球O的球面上的四個點,S,O在平面ABC的同側,∠ABC=120°,AB=BC=2,平面SAC⊥平面ABC,若三棱錐S-ABC的體積為
3
,則該球的表面積為( 。
A、18πB、16π
C、20πD、25π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)如圖所示的程序框圖,若輸出的結果T=600,則圖中橫線上應填( 。
A、48B、50C、52D、54

查看答案和解析>>

同步練習冊答案