(12分)
已知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個極值點,其中m,n∈R.
(1)求m與n的關(guān)系式;
(2)求f(x)的單調(diào)區(qū)間;
(3)當x∈[-1,1]時,m<0,函數(shù)y=f(x)的圖象上任意一點的切線斜率恒大于3m,求m的取值范圍.
(1)
(2)當時,在單調(diào)遞減,在單調(diào)遞增,在上單調(diào)遞減.
當m>0時,f(x)在(1+)及(-,1)上單調(diào)遞增;在(1,1+)上單調(diào)遞減 .
(3)的取值范圍為
【解析】近幾年新課標高考對于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點考查函數(shù)單調(diào)性、導(dǎo)數(shù)運算、不等式方程的求解等基本知識,注重數(shù)學思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運用.把數(shù)學運算的“力量”與數(shù)學思維的“技巧”完美結(jié)合
解:(I)因為是函數(shù)的一個極值點,所以,即,所以
(II)當m=0時,上為增函數(shù),在(6,+)上為減函數(shù)
當m≠0時,=
當時,有,當變化時,與的變化如下表:
1 |
|||||
0 |
0 |
||||
|
|
|
|
|
|
調(diào)調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
故由上表知,當時,在單調(diào)遞減,在單調(diào)遞增,在上單調(diào)遞減.
當m>0時,f(x)在(1+)及(-,1)上單調(diào)遞增;在(1,1+)上單調(diào)遞減 .
(III)由已知得,即
又所以即①
設(shè),其函數(shù)開口向上,由題意知①式恒成立,
所以解之得又所以
即的取值范圍為
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
e |
1 |
3 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com