精英家教網 > 高中數學 > 題目詳情
已知雙曲線
x2
a2
-y2=1(a>0)的一個焦點與拋物線x=
1
8
y2的焦點重合,則此雙曲線的離心率為(  )
A.
3
3
2
B.
3
C.
2
3
3
D.
4
3
3
拋物線x=
1
8
y2的標準方程為y2=8x,
它的焦點坐標為F(2,0),
∵雙曲線
x2
a2
-y2=1(a>0)的一個焦點與拋物線x=
1
8
y2的焦點重合,
∴雙曲線
x2
a2
-y2=1(a>0)的一個焦點為F(2,0),
∴a2+1=4,解得a2=3,即a=
3
,
∴此雙曲線的離心率e=
c
a
=
2
3
=
2
3
3

故選C.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

若方程
x2
n-2
+
y2
n+3
=1
表示焦點在y軸上的雙曲線,則n的取值范圍( 。
A.n>2B.n<-3C.-3<n<2D.n<-3或n>2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓
x2
m
+y2=1(m>1)和雙曲線
x2
n
-y2=1(n>0)有相同的焦點F1,F2,P是它們的一個交點,則△F1PF2的形狀是( 。
A.銳角三角形B.直角三角形
C.鈍角三角形D.隨m,n的變化而變化

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線:x2-
y2
4
=1
的漸近線方程和離心率分別是(  )
A.y=±
1
2
x,e=
5
B.y=±2x,e=
3
C.y=±
1
2
x,e=
3
D.y=±2x,e=
5

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線x2+my2=1的虛軸長是實軸長的2倍,則雙曲線的漸近線方程為( 。
A.y=±2xB.y=±
1
2
x
C.y=±
2
x
D.y=±
2
2
x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

以拋物線y2=12x的焦點為圓心,且與雙曲線
x2
16
-
y2
9
=1
的兩條漸近線相切的圓的方程為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線
x2
9
-
y2
16
=1
的焦點到漸近線的距離等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線x2-y2=1的漸近線方程是(  )
A.x=±1B.y=±
2
x
C.y=±xD.y=±
2
2
x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1、F2,離心率為e,過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2=______.

查看答案和解析>>

同步練習冊答案