【題目】若一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)的散點圖,這些點將不會落在一條直線上,但在一段時間內(nèi)的增長數(shù)據(jù)有時可以用線性回歸來分析,下表是一位母親給兒子做的成長記錄:

年齡/周歲

3

4

5

6

7

8

9

身高/cm

91.8

97.6

104.2

110.9

115.6

122.0

128.5

年齡/周歲

10

11

12

13

14

15

16

身高/cm

134.2

140.8

147.6

154.2

160.9

167.5

173.0

(1)年齡(解釋變量)和身高(預報變量)之間具有怎樣的相關(guān)關(guān)系?

(2)如果年齡相差5歲,則身高有多大差異(3~16歲之間)?

(3)如果身高相差20 cm,其年齡相差多少(3~16歲之間)?

(4)試判斷該函數(shù)模型是否能夠較好地反映年齡與身高的關(guān)系.

【答案】(1)答案見解析;(2);(3)3歲;(4)答案見解析

【解析】

解:(1)設(shè)年齡x與身高y之間的回歸直線方程為x,由公式≈6.286, ≈72,所以6.286x72.

(2)如果年齡相差5歲,則預報變量變化6.286×531.425,即身高相差約31.4 cm.

(3)如果身高相差20 cm,年齡相差Δx3.182≈3()

(4)

y

91.8

97.6

104.2

110.9

115.6

122.0

128.5

i

90.9

97.1

103.4

109.7

116.0

122.3

128.6


y

134.2

140.8

147.6

154.2

160.9

167.5

173.0

i

134.9

141.1

147.4

153.7

160.0

166.3

172.6

由表得R21≈0.999 7.R20.999 7,表明年齡解釋了99.97%的身高的變化,擬合效果較好.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)若,求經(jīng)過點且與曲線只有一個公共點的直線方程:

(2)若,請在直角坐標平面內(nèi)找出縱坐標不同的兩個點,此兩點滿足條件:無論如何變化,這兩個點都不在曲線上;

(3)若曲線與線段有公共點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0)的最小正周期為π,則該函數(shù)的圖象(
A.關(guān)于直線x= 對稱
B.關(guān)于點( ,0)對稱
C.關(guān)于直線x=﹣ 對稱
D.關(guān)于點( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)上購物系統(tǒng)是一種具有交互功能的商業(yè)信息系統(tǒng),它在網(wǎng)絡上建立一個虛擬的購物商場,使購物過程變得輕松、快捷、方便.網(wǎng)上購物系統(tǒng)分為前臺管理和后臺管理,前臺管理包括瀏覽商品、查詢商品、訂購商品、用戶注冊等功能;后臺管理包括公告管理、商品管理、訂單管理、投訴管理和用戶管理等模塊.根據(jù)這些要求畫出該系統(tǒng)的結(jié)構(gòu)圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】冶煉某種金屬可以用舊設(shè)備和改造后的新設(shè)備,為了檢驗用這兩種設(shè)備生產(chǎn)的產(chǎn)品中所含雜質(zhì)的關(guān)系,調(diào)查結(jié)果如下表所示:

分類

雜質(zhì)高

雜質(zhì)低

舊設(shè)備

37

121

新設(shè)備

22

202

根據(jù)以上數(shù)據(jù),則(  )

A. 含雜質(zhì)的高低與設(shè)備改造有關(guān)

B. 含雜質(zhì)的高低與設(shè)備改造無關(guān)

C. 設(shè)備是否改造決定含雜質(zhì)的高低

D. 以上答案都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,圓C的方程為ρ=2acosθ(a≠0),以極點為坐標原點,極軸為x軸正半軸建立平面直角坐標系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求圓C的直角坐標方程(化為標準方程)和直線l的極坐標方程;
(2)若直線l與圓C只有一個公共點,且a<1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,且AB=AD,BC=DC.

(1)求證:∥平面EFGH;

(2)求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,D是直角△ABC斜邊BC上一點,AC= DC.
(I)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=2 ,求DC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A、B兩個投資項目的利潤率分別為隨機變量X1X2,根據(jù)市場分析,X1X2的分布列分別為

X1

5%

10%

P

0.8

0.2

X2

2%

8%

12%

P

0.2

0.5

0.3

(1)A,B兩個項目上各投資100萬元,Y1Y2分別表示投資項目AB所獲得的利潤,求方差V(Y1)、V(Y2);

(2)x(0≤x≤100)萬元投資A項目,100x萬元投資B項目,f(x)表示投資A項目所得利潤的方差與投資B項目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時,f(x)取到最小值.

查看答案和解析>>

同步練習冊答案