【題目】2017年3月18日,國(guó)務(wù)院辦公廳發(fā)布了《生活垃圾分類制度實(shí)施方案》,我市環(huán)保部門組織了一次垃圾分類知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民都可以通過(guò)電腦網(wǎng)絡(luò)或手機(jī)微信平臺(tái)參與,但僅有一次參加機(jī)會(huì)工作人員通過(guò)隨機(jī)抽樣,得到參與網(wǎng)絡(luò)問(wèn)卷調(diào)查的100人的得分(滿分按100分計(jì))數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表.
組別 | ||||||
女 | 2 | 4 | 4 | 15 | 21 | 9 |
男 | 1 | 4 | 10 | 10 | 12 | 8 |
(1)環(huán)保部門規(guī)定:?jiǎn)柧淼梅植坏陀?/span>70分的市民被稱為“環(huán)保關(guān)注者”.請(qǐng)列出列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?
(2)若問(wèn)卷得分不低于80分的人稱為“環(huán)保達(dá)人”.現(xiàn)在從本次調(diào)查的“環(huán)保達(dá)人”中利用分層抽樣的方法隨機(jī)抽取5名市民參與環(huán)保知識(shí)問(wèn)答,再?gòu)倪@5名市民中抽取2人參與座談會(huì),求抽取的2名市民中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率.
附表及公式:,.
【答案】(1)見(jiàn)解析,在犯錯(cuò)誤的概率不超過(guò)的前提下,可以認(rèn)為是否為是“環(huán)保關(guān)注者”與性別是有關(guān)的.(2)
【解析】
(1)根據(jù)題目所給的數(shù)據(jù)可求2×2列聯(lián)表即可;計(jì)算K的觀測(cè)值K2,對(duì)照題目中的表格,得出統(tǒng)計(jì)結(jié)論;
(2)利用列舉法求得所有情況,根據(jù)古典概型可計(jì)算.
(1)列聯(lián)表如下:
非“環(huán)保關(guān)注者” | “環(huán)保關(guān)注者” | 合計(jì) | |
女 | 10 | 45 | 55 |
男 | 15 | 30 | 45 |
合計(jì) | 25 | 75 | 100 |
將列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得的觀測(cè)值
,
所以在犯錯(cuò)誤的概率不超過(guò)的前提下,可以認(rèn)為是否為是“環(huán)保關(guān)注者”與性別是有關(guān)的.
(2)由題意可知,利用分層抽樣的方法可得女“環(huán)保達(dá)人”3人,男“環(huán)保達(dá)人”2人.
設(shè)女“環(huán)保達(dá)人”3人分別為,,;男“環(huán)保達(dá)人”2人為,.
從中抽取兩人的所有情況為:,,,,,,,,,,共l0種情況.
既有女“環(huán)保達(dá)人”又有男“環(huán)保達(dá)人”的情況有,,,,,,共6種情況.
故所求概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說(shuō)法錯(cuò)誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖,記綜合評(píng)分為80分及以上的花苗為優(yōu)質(zhì)花苗.
(1)用樣本估計(jì)總體,以頻率作為概率,若在兩塊實(shí)驗(yàn)地隨機(jī)抽取3株花苗,求所抽取的花苗中優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
(2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計(jì) |
附:下面的臨界值表僅供參考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左右焦點(diǎn)為為它的中心,為雙曲線右支上的一點(diǎn),的內(nèi)切圓圓心為,且圓與軸相切于點(diǎn),過(guò)作直線的垂線,垂足為,若雙曲線的離心率為,則( )
A.B.C.D.與關(guān)系不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)由方程到確定,對(duì)于函數(shù)給出下列命題:
①對(duì)任意,都有恒成立:
②,使得且同時(shí)成立;
③對(duì)于任意恒成立;
④對(duì)任意,,
都有恒成立.其中正確的命題共有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱長(zhǎng)為1的正方體中,是線段上的動(dòng)點(diǎn),則下列結(jié)論正確的是( ).
①異面直線與所成的角為
②
③三棱錐的體積為定值
④的最小值為2.
A.①②③B.①②④C.③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,過(guò)焦點(diǎn)且垂直于軸的直線被橢圓所截得的弦長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若經(jīng)過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn)是坐標(biāo)原點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知非空集合是由一些函數(shù)組成,滿足如下性質(zhì):①對(duì)任意,均存在反函數(shù),且;②對(duì)任意,方程均有解;③對(duì)任意、,若函數(shù)為定義在上的一次函數(shù),則.
(1)若,,均在集合中,求證:函數(shù);
(2)若函數(shù)()在集合中,求實(shí)數(shù)的取值范圍;
(3)若集合中的函數(shù)均為定義在上的一次函數(shù),求證:存在一個(gè)實(shí)數(shù),使得對(duì)一切,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在空間直角坐標(biāo)系O-xyz中,已知正四棱錐PABCD的高OP=2,點(diǎn)B,D和C,A分別在x軸和y軸上,且AB= ,點(diǎn)M是棱PC的中點(diǎn).
(1)求直線AM與平面PAB所成角的正弦值;
(2)求二面角A-PB-C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com