【題目】如圖,已知雙曲線的左、右焦點(diǎn)分別為、,過右焦點(diǎn)作平行于一條漸近線的直線交雙曲線于點(diǎn),若的內(nèi)切圓半徑為,則雙曲線的離心率為( )

A.B.C.D.

【答案】C

【解析】

設(shè)雙曲線的左、右焦點(diǎn)分別為,,設(shè)雙曲線的一條漸近線方程為,可得直線的方程為,聯(lián)立雙曲線的方程可得的坐標(biāo),設(shè),,運(yùn)用三角形的等積法,以及雙曲線的定義,結(jié)合銳角三角函數(shù)的定義,化簡(jiǎn)變形可得,的方程,結(jié)合離心率公式可得所求值.

設(shè)雙曲線的左、右焦點(diǎn)分別為,,

設(shè)雙曲線的一條漸近線方程為

可得直線的方程為,與雙曲線聯(lián)立,

可得,

設(shè),

由三角形的面積的等積法可得,

化簡(jiǎn)可得

由雙曲線的定義可得

在三角形,為直線的傾斜角),

,,可得,

可得,③

由①②③化簡(jiǎn)可得,

即為,

可得,則

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中.恒成立,則當(dāng)取得最小值時(shí),的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)實(shí)施光盤行動(dòng)以后,某自助啤酒吧也制定了自己的行動(dòng)計(jì)劃,進(jìn)店的每一位客人需預(yù)交50元,啤酒根據(jù)需要自己用量杯量取.結(jié)賬時(shí),剩余酒量不足1升的,按0升計(jì)算(如剩余1.7升,記為剩余1).

統(tǒng)計(jì)表明飲酒量與人數(shù)有很強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的5組數(shù)據(jù)(其中表示飲酒人數(shù),()表示飲酒量):,,.

(1)求由這5組數(shù)據(jù)得到的關(guān)于的回歸直線方程;

(2)小王約了5位朋友一同來飲酒,小王及朋友用量杯共量取了8升啤酒,這時(shí),酒吧服務(wù)生對(duì)小王說,根據(jù)他的經(jīng)驗(yàn),小王和朋友量取的啤酒可能喝不完,可以考慮再邀請(qǐng)一個(gè)或兩個(gè)朋友一起來飲酒,會(huì)更劃算.試問小王是否該接受服務(wù)生的建議.

參考數(shù)據(jù):回歸直線的方程是,其中

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn),過點(diǎn)的直線與拋物線有兩個(gè)不同的交點(diǎn),且直線軸于點(diǎn),直線軸于點(diǎn)

1)求直線的斜率的取值范圍;

2)設(shè)為原點(diǎn),,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,直線與圓交于,兩點(diǎn).

1)若直線過點(diǎn),且,求被橢圓所截得的弦的長(zhǎng)度;

2)若已知點(diǎn)在橢圓上,動(dòng)點(diǎn)滿足,請(qǐng)判斷點(diǎn)與圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于,兩點(diǎn),且的面積為16為坐標(biāo)原點(diǎn)).

1)求的方程;

2)直線經(jīng)過的焦點(diǎn)不與軸垂直,與交于,兩點(diǎn),若線段的垂直平分線與軸交于點(diǎn),證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,則下列說法中錯(cuò)誤的是( )

A.個(gè)零點(diǎn)B.最小值為

C.在區(qū)間單調(diào)遞減D.的圖象關(guān)于軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在水平地面上的不同兩點(diǎn)處栽有兩根筆直的電線桿,假設(shè)它們都垂直于地面,則在水平地面上視它們上端仰角相等的點(diǎn)的軌跡可能是(

①直線 ②圓 ③橢圓 ④拋物線

A.①②B.①③C.①②③D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案