已知A、B、C是直線l上的不同三點,O是l外一點,向量
OA
,
OB
,
OC
滿足
OA
=(
3
2
x2+1)
OB
-(lnx-y)
OC
,記y=f(x);
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.
分析:(1)直接利用結(jié)論:A、B、C是直線l上的不同三點,則
OA
OB
+(1-λ)
OC
,得(
3
2
x2+1)+(lnx-y)=1
,整理即可求出函數(shù)y=f(x)的解析式;
(2)先求出其導(dǎo)函數(shù).利用導(dǎo)函數(shù)與原函數(shù)單調(diào)性的關(guān)系來求單調(diào)區(qū)間即可.(注意是在定義域內(nèi)).
解答:解:(1)∵
OA
=(
3
2
x2+1)
OB
-(lnx-y)
OC
,且A、B、C是直線l上的不同三點,
(
3
2
x2+1)-(lnx-y)=1
,∴y=
3
2
x2-lnx
;(6分)
(2)∵f(x)=
3
2
x2-lnx
,
f′(x)=3x-
1
x
=
3x2-1
x
,(8分)
f(x)=
3
2
x2-lnx
的定義域為(0,+∞),而f′(x)=
3x2-1
x
>0,可得x>
3
3

∴y=f(x)在(
3
3
,+∞)上為增函數(shù),在(0,
3
3
)是減函數(shù),即y=f(x)的單調(diào)增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間是(0,
3
3
).(12分)
點評:本題主要考查向量在幾何中的應(yīng)用以及利用導(dǎo)函數(shù)研究原函數(shù)的單調(diào)性,是對向量向量知識和函數(shù)知識的綜合考查屬于中檔題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、已知a、b、c是直線,α是平面,給出下列命題:
①若a∥b,b⊥c,則a⊥c;②若a⊥b,b⊥c,則a∥c;
③若a∥α,b?α,則a∥b;④若a⊥α,b?α,則a⊥b;
⑤若a與b異面,則至多有一條直線與a、b都垂直.
其中真命題是
①④
.(把符合條件的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是直線l上不同的三點,O是l外一點,向量
OA
,
OB
,
OC
滿足:
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
.記y=f(x).
(Ⅰ)求函數(shù)y=f(x)的解析式:
(Ⅱ)若對任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求實數(shù)a的取值范圍:
(Ⅲ)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c是直線,β是平面,給出下列命題:
①若a⊥b,b⊥c,則a∥c;
②若a∥b,b⊥c,則a⊥c;
③若a∥β,a?α,α∩β=b則a‖b;
④若a與b異面,且a∥β,則b與β相交;
其中真命題的序號是
②③
②③
.(要求寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是直線l上的不同的三點,O是外一點,則向量
OA
、
OB
OC
滿足:
OA
OB
OC
,其中λ+μ=1.
(1)若A、B、C三點共線且有
OA
-(3x+1)•
OB
-(
3
2+3x
-y)•
OC
=
0
成立.記y=f(x),求函數(shù)y=f(x)的解析式;
(2)若對任意x∈[
1
6
,
1
3
]
,不等式|a-lnx|-ln[f(x)-3x]>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案