【題目】某教師為了了解本校高三學生一?荚嚨臄(shù)學成績情況,將所教兩個班級的數(shù)學成績(單位:分)繪制成如圖所示的莖葉圖.

(1)分別求出甲、乙兩個班級數(shù)學成績的中位數(shù)、眾數(shù);

(2)若規(guī)定成績大于等于115分為優(yōu)秀,分別求出兩個班級數(shù)學成績的優(yōu)秀率;

(3)在(2)的條件下,若用甲班學生數(shù)學成績的頻率估計概率,從該校高三年級中隨機抽取3人,記這3人中數(shù)學成績優(yōu)秀的人數(shù)為,求的分布列和數(shù)學期望.

【答案】(1)見解析;(2);(3)見解析

【解析】

(1)由莖葉圖計算出甲、乙兩個班級數(shù)學成績的中位數(shù)、眾數(shù);(2)利用古典概型公式分別求出兩個班級數(shù)學成績的優(yōu)秀率;(3)根據(jù)題意,得到變量的可能取值,結合變量對應的事件寫出變量的概率,根據(jù)變量和概率的值寫出分布列,做出期望值.

(1)由所給的莖葉圖知,甲班50名同學的成績由小到大排序,排在第25,26位的是108,109,數(shù)量最多的是103,故甲班數(shù)學成績的中位數(shù)是108.5,眾數(shù)是103;

乙班48名同學的成績由小到大排序,排在第24,25位的是106,107,數(shù)量最多的是92和101,故乙班數(shù)學成績的中位數(shù)是106.5,眾數(shù)為92和101.

(2)由莖葉圖中的數(shù)據(jù)可知,甲班中數(shù)學成績?yōu)閮?yōu)秀的人數(shù)為20,優(yōu)秀率為;乙班中數(shù)學成績?yōu)閮?yōu)秀的人數(shù)為18,優(yōu)秀率為

(3)用甲班學生數(shù)學成績的頻率估計概率,則高三學生數(shù)學成績的優(yōu)秀率,則的所有可能取值為0,1,2,3,服從二項分布,即

;;

;

的分布列為

0

1

2

3

=0×+1×+2×+3×=(或=).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市兩所高級中學聯(lián)合在暑假組織全體教師外出旅游,活動分為兩條線路:華東五市游和長白山之旅,且每位教師至多參加了其中的一條線路.在參加活動的教師中,高一教師占42.5%,高二教師占47.5%,高三教師占10%.參加華東五市游的教師占參加活動總人數(shù)的,且該組中,高一教師占50%,高二教師占40%,高三教師占10%.為了了解各條線路不同年級的教師對本次活動的滿意程度,現(xiàn)用分層隨機抽樣的方法從參加活動的全體教師中抽取一個容量為200的樣本.試確定:

1)參加長白山之旅的高一教師、高二教師、高三教師在該組分別所占的比例;

2)參加長白山之旅的高一教師、高二教師、高三教師分別應抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面分別是線段的中點,.

(1)求證:∥平面

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1;

(2)若函數(shù)f(x)R上單調遞增,求實數(shù)a的取值范圍;

(3)是否存在實數(shù)a,使不等式f(x)≥2x3對任意xR恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當時,求的解集;

(Ⅱ)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù),點、分別是的圖象與軸、軸的交點,、分別是的圖象上橫坐標為的兩點,軸,且、三點共線.

1)求函數(shù)的解析式;

2)若,求;

3)若關于的函數(shù)在區(qū)間上恰好有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點M(1,0)的直線與圓C交于A,B兩點(Ax軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足對于任意實數(shù),都有,且當時,,

1)判斷的奇偶性并證明;

2)判斷的單調性,并求當時,的最大值及最小值;

3)解關于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商計劃銷售一款新型的電子產品,經(jīng)市場調研發(fā)現(xiàn)以下規(guī)律:當每臺電子產品的利潤為x(單位:元,x>0)時銷售量q(x)(單位:百臺)與x的關系滿足:若x不超過25,q(x)= ;若x大于或等于225,則銷售量為零;當25≤x≤225,q(x)=a-b(a,b為實常數(shù)).

(1) 求函數(shù)q(x)的表達式;

(2) 當x為多少時,總利潤(單位:元)取得最大值,并求出該最大值.

查看答案和解析>>

同步練習冊答案