【題目】已知函數(shù) 的值域為(﹣∞,0]∪[4,+∞),則a的值是(
A.
B.
C.1
D.2

【答案】C
【解析】解:由題意:函數(shù) 的定義域為(﹣∞,0)∪(0,+∞),值域為(﹣∞,0]∪[4,+∞),
,當x>0,a>0時,y的最小值2 ,
則當x>0,a>0時, 的最小值為2 +2,
由題意: ,解得a=1.滿足題意.
當x<0,a>0時,y的最大值為﹣2 +2,
由題意:﹣2 +2=﹣1,解得a=1.滿足題意.
因此得a=1.
故選:C.
【考點精析】關于本題考查的函數(shù)的值域,需要了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質是相同的才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)對任意實數(shù),都有恒成立.

(Ⅰ)證明:

(Ⅱ)若,求的表達式;

(Ⅲ)在題(Ⅱ)的條件下設,若圖象上的點都位于直線的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若 ,△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(常數(shù)).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)若曲線與直線相切,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若0<α< ,﹣ <β<0,cos( +α)= ,cos( )= ,則cos(α+ )=(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),設關于的方程個不同的實數(shù)解,則的所有可能的值為( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的最值;

(2)當時,對任意都有恒成立,求實數(shù)的取值范圍;

(3)當時,設函數(shù),數(shù)列滿足 ,求證: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解春季晝夜溫差大小與種子發(fā)芽多少之間的關系,現(xiàn)從4月的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每50顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月6日

4月12日

4月19日

4月27日

溫差

2

3

5

4

1

發(fā)芽數(shù)

9

11

15

13

7

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于13”的概率;

(2)若4月30日晝夜溫差為,請根據(jù)關于的線性回歸方程估計該天種子浸泡后的發(fā)芽數(shù).

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】首屆世界低碳經(jīng)濟大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國家科研部門的支持下,進行技術攻關,采用了新工藝,把二氧化碳轉化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關系可近似地表示為 ,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補貼多少元才能使該單位不虧損?

查看答案和解析>>

同步練習冊答案