【題目】在平面直角坐標(biāo)系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.
(1)求圓的方程。
(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且△的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的△的面積;若不存在,請說明理由.
【答案】(1) . (2)見解析.
【解析】試題分析:(1)設(shè)圓心是,由直線于圓相切可知,圓心到直線的距離等于半徑,利用點到直線的距離公式可求,進(jìn)而可求圓的方程;(2)把點代入圓的方程可得, 的方程,結(jié)合原點到直線的距離,可求的范圍,根據(jù)弦長公式求出,代入三角形的面積公式,結(jié)合二次函數(shù)的性質(zhì)可求最大值.
試題解析:(1)設(shè)圓心是,它到直線的距離是,解得
或 (舍去),
所以所求圓的方程是.
(2)存在,理由如下:因為點在圓上,所以,
且.
又因為原點到直線的距離,
解得,而,
所以,
因為,所以當(dāng),即時, 取得最大值,
此時點的坐標(biāo)是或, 的面積的最大值是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若點O在內(nèi),且滿足,設(shè)為的面積, 為的面積,則=________.
【答案】
【解析】由,可得:
延長OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,
如圖所示:
∵2+3+4=,
∴,
即O是△DEF的重心,
故△DOE,△EOF,△DOF的面積相等,
不妨令它們的面積均為1,
則△AOB的面積為,△BOC的面積為,△AOC的面積為,
故三角形△AOB,△BOC,△AOC的面積之比依次為: : : =3:2:4,
.
故答案為: .
點睛:本題考查的知識點是三角形面積公式,三角形重心的性質(zhì),平面向量在幾何中的應(yīng)用,注意重要結(jié)論:點O在內(nèi),且滿足, 則三角形△AOB,△BOC,△AOC的面積之比依次為: .
【題型】填空題
【結(jié)束】
16
【題目】如圖,正方形ABCD的邊長為2,O為AD的中點,射線OP從OA出發(fā),繞著點O順時針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記為OP所經(jīng)過的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對于函數(shù)有以下三個結(jié)論:
①;
②任意,都有;
③任意且,都有.
其中正確結(jié)論的序號是__________. (把所有正確結(jié)論的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的通項公式為(, ),數(shù)列定義如下:對于正整數(shù), 是使得不等式成立的所有中的最小值.
(1)若, ,求;
(2)若, ,求數(shù)列的前項和公式;
(3)是否存在和,使得 ?如果存在,求和的取值范圍;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…為自然對數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,證明:e﹣2<a<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓 =1的右焦點F作斜率k=﹣1的直線交橢圓于A,B兩點,且 共線.
(1)求橢圓的離心率;
(2)當(dāng)三角形AOB的面積S△AOB= 時,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ( )的最大值為 ,最小值為 .
(1)求 的值;
(2)將函數(shù) 圖象向右平移 個單位后,再將圖象上所有點的縱坐標(biāo)擴(kuò)大到原來的 倍,橫坐標(biāo)不變,得到函數(shù) 的圖象,求方程 的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的方程為 + =1(a>b>0),雙曲線 ﹣ =1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4 .
(1)求橢圓C的方程;
(2)設(shè)F1 , F2分別為橢圓C的左,右焦點,過F2作直線l(與x軸不重合)交于橢圓于A,B兩點,線段AB的中點為E,記直線F1E的斜率為k,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個結(jié)果:① ;②26-7;③ ,其中正確的結(jié)論是( )
A.僅有①
B.僅有②
C.②與③
D.僅有③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com