【題目】已知數(shù)列的前n項和為,(n∈N*).
(1)證明數(shù)列是等比數(shù)列,求出數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前n項和;
(3)數(shù)列中是否存在三項,它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項;若不存在,說明理由.
【答案】(1)證明見解析,;(2);(3)不存在滿足條件的三項
【解析】
(1)由已知數(shù)列遞推式可得數(shù)列是等比數(shù)列,結(jié)合等比數(shù)列的通項公式求得數(shù)列的通項公式;
(2)把數(shù)列的通項公式代入,然后利用錯位相減法求數(shù)列的前項和;
(3)假設(shè)存在,且,使得成等差數(shù)列,然后推出矛盾可得假設(shè)不成立,從而可得不存在滿足條件的三項.
(1)證明:∵,∴,
則,∴,
即,
∴數(shù)列是公比為2的等比數(shù)列,
,,則,
∴;
(2)解:,
,
令,①
,②
①-②得,,
,
∴;
(3)解:設(shè)存在,且,使得成等差數(shù)列,
則,
即,
即,,
∵為偶數(shù),為奇數(shù),
∴不成立,故不存在滿足條件的三項.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定數(shù)列. 對,該數(shù)列前項的最大值記為,后項的最小值記為,.
(1)設(shè)數(shù)列為3,4,7,1. 寫出的值;
(2)設(shè)是公比大于的等比數(shù)列,且,證明是等比數(shù)列;
(3)若,證明是常數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+3.
(1)當(dāng)x∈R時,f(x)≥a恒成立,求a的取值范圍.
(2)當(dāng)a∈[4,6]時,f(x)≥0恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求證:恒成立;
(2)若關(guān)于的方程至少有兩個不相等的實數(shù)根,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市組織高三全體學(xué)生參加計算機操作比賽,等級分為1至10分,隨機調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如下:
(1)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.
(2)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口水的深度是時間(,單位:)的函數(shù),記作.下面是某日水深的數(shù)據(jù):
經(jīng)長期觀察,的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時,船底離海底的距離為或以上時認(rèn)為是安全的(船舶?繒r,船底只需不碰海底即可).某船吃水程度(船底離水面的距離)為,如果該船希望在同一天內(nèi)安全進(jìn)出港,請問,它最多能在港內(nèi)停留( )小時(忽略進(jìn)出港所需的時間).
A.6 B.12
C.16 D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)
已知橢圓C:過點,且長軸長等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是橢圓C的兩個焦點,⊙O是以F1F2為直徑的圓,直線l: y=kx+m與⊙O相切,并與橢圓C交于不同的兩點A、B,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C:(a>b>0)的左、右焦點分別為,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點M(0,-1),直線l經(jīng)過點N(2,1)且與橢圓C相交于A,B兩點(異于點M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com