(2012•江蘇二模)已知函數(shù)f(x)=
f(x+1),x≤2
3-x,x>2
則f(log32)的值為
1
18
1
18
分析:根據(jù)對數(shù)的定義判斷出0<log32<1,再結(jié)合函數(shù)的對應(yīng)法則,可得f(log32)=f(log32+2),將其代入解析式再用對數(shù)的運算性質(zhì)進(jìn)行化簡,可求出它的值.
解答:解:∵1<2<3,∴l(xiāng)og31<log32<log33,即0<log32<1
因此log32<1≤2且log32+1≤2
∴f(log32)=f(log32+1)=f(log32+2)
而log32+2∈(2,3],
所以f(log32+2)=3-log32-2=3-log32×3-2=3log3
1
2
×
1
9
=
1
2
×
1
9
=
1
18

故答案為:
1
18
點評:本題給出函數(shù)表達(dá)式,求log32對應(yīng)的函數(shù)值,著重考查了函數(shù)的對應(yīng)法則和對數(shù)的運算性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇二模)設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,給出下列命題:
(1)若α∥β,m?β,n?α,則m∥n;
(2)若α∥β,m⊥β,n∥α,則m⊥n;
(3)若α⊥β,m⊥α,n∥β,則m∥n;
(4)若α⊥β,m⊥α,n⊥β,則m⊥n.
上面命題中,所有真命題的序號為
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇二模)如圖,已知A、B是函數(shù)y=3sin(2x+θ)的圖象與x軸兩相鄰交點,C是圖象上A,B之間的最低點,則
AB
AC
=
π2
8
π2
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇二模)如圖,在C城周邊已有兩條公路l1,l2在點O處交匯,現(xiàn)規(guī)劃在公路l1,l2上分別選擇A,B兩處為交匯點(異于點O)直接修建一條公路通過C城,已知OC=(
2
+
6
)km
,∠AOB=75°,∠AOC=45°,設(shè)OA=xkm,OB=ykm.
(1)求y關(guān)于x的函數(shù)關(guān)系式并指出它的定義域;
(2)試確定點A、B的位置,使△OAB的面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇二模)設(shè)實數(shù)n≤6,若不等式2xm+(2-x)n-8≥0對任意x∈[-4,2]都成立,則
m4-n4
m3n
的最小值為
-
80
3
-
80
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇二模)已知雙曲線
x2
m
-
y2
3
=1(m>0)
的一條漸近線方程為y=
3
2
x
,則m的值為
4
4

查看答案和解析>>

同步練習(xí)冊答案