【題目】設(shè)函數(shù),,其中,為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)證明:當(dāng)時,;
(3)確定的所有可能取值,使得在區(qū)間內(nèi)恒成立.
【答案】(1)當(dāng)時單調(diào)遞減;當(dāng)時,單調(diào)遞增;
(2)詳見解析;(3).
【解析】
試題分析:(1)首先對求導(dǎo),然后對進(jìn)行討論,從而判斷函數(shù)的單調(diào)性;(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論;(3)構(gòu)造函數(shù)(),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而求解的值.
試題解析:(1)由,得.
當(dāng)時,在成立,則為上的減函數(shù);
當(dāng)時,由,得,
∴當(dāng)時,,當(dāng)時,.
則在上為減函數(shù),在上為增函數(shù).
綜上,當(dāng)時,為上的減函數(shù);當(dāng)時,在上為減函數(shù),在上為增函數(shù).
(2)證明:要證,即,即證,也就是證.
令,則,∴在上單調(diào)遞增,則,
即當(dāng)時,,∴當(dāng)時,;
(3)由,得.
設(shè),由題意知,在內(nèi)恒成立.
∵,∴有在內(nèi)恒成立.
令,則,
當(dāng)時,,
令,,函數(shù)在上單調(diào)遞增.∴.
又,,∴,.
綜上所述,,,在區(qū)間單調(diào)遞增,
∴,即在區(qū)間單調(diào)遞增,∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓短軸的左右兩個端點(diǎn)分別為A,B,直線與x軸、y軸分別交于兩點(diǎn)E,F(xiàn),交橢圓于兩點(diǎn)C,D.
(1)若,求直線的方程;
(2)設(shè)直線AD,CB的斜率分別為,若,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以Ox軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為,.求:
(1)tan(α+β)的值;
(2)α+2β的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+y)=f(x)+f(y),當(dāng)x>0時,有,且f(1)=﹣2
(1)求f(0)及f(﹣1)的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并利用定義加以證明;
(3)求解不等式f(2x)﹣f(x2+3x)<4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的值域;
(2)已知,函數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤.
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,
BF⊥平面ACE,且點(diǎn)F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐D—AEC的體積;
(3)設(shè)點(diǎn)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,
使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:
月份 | |||
利潤 |
(1)求利潤關(guān)于月份的線性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測月和月的利潤;
(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過萬?
相關(guān)公式: , .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com