4.已知z=(m-3)+(m+1)i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)m的取值范圍是(  )
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

分析 利用復(fù)數(shù)的幾何意義、不等式的解法即可得出.

解答 解:z=(m-3)+(m+1)i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,
∴m-3<0,m+1>0,解得-1<m<3.
則實(shí)數(shù)m的取值范圍是(-1,3).
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,那么輸出的S為( 。
A.-2B.$\frac{1}{2}$C.$\frac{4}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)為定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)為二次函數(shù),且滿足f(2)=1,f(x)在x軸上的兩個(gè)交點(diǎn)為(1,0)、(3,0).
(1)求函數(shù)f(x)在R上的解析式;
(2)作出f(x)的圖象,并根據(jù)圖象寫出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓心為C的圓經(jīng)過點(diǎn)A(1,1)和點(diǎn)B(2,-2)且圓心C在直線l:x+3y+3=0上.
(1)求圓C的方程.
(2)若P是直線3x+4y-21=0上的動(dòng)點(diǎn),PM,PN是圓C的兩條切線,M,N為切點(diǎn),設(shè)|PC|=t,把四邊形PMCN的面積S表示為t的函數(shù),并求出該函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某教室一天的溫度(單位:℃)隨時(shí)間(單位:h)變化近似地滿足函數(shù)關(guān)系:$f(t)=20-2sin({\frac{π}{24}t-\frac{π}{6}})$,t∈[0,24],則該天教室的最大溫差為3℃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.檢測600個(gè)某產(chǎn)品的質(zhì)量(單位:g),得到的直方圖中,前三組的長方形的高度成等差數(shù)列,后三組對應(yīng)的長方形的高度成公比為0.5的等比數(shù)列,已知檢測的質(zhì)量在100.5-105.5之間的產(chǎn)品數(shù)為150,則質(zhì)量在115.5-120.5的長方形高度為( 。
A.$\frac{1}{12}$B.$\frac{1}{30}$C.$\frac{1}{6}$D.$\frac{1}{60}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四邊形ABCD是邊長為$\sqrt{2}$的正方形,CG⊥平面ABCD,DE∥BF∥CG,$DE=BF=\frac{3}{5}CG$.P為線段EF的中點(diǎn),AP與平面ABCD所成角為60°.在線段CG上取一點(diǎn)H,使得$GH=\frac{3}{5}CG$.
(Ⅰ)求證:PH⊥平面AEF;
(Ⅱ)求多面體ABDEFH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.錐體中,平行于底面的兩個(gè)平面把錐體的體積三等分,這時(shí)高被分成三段的長自上而下的比為( 。
A.1:$\root{3}{2}$:$\root{3}{3}$B.1:2:3C.1:($\sqrt{2}$-1):($\sqrt{3}$-$\sqrt{2}$)D.1:($\root{3}{2}$-1):($\root{3}{3}$-$\root{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某單位將舉辦慶典活動(dòng),要在廣場上豎立一形狀為等腰梯形的彩門BADC (如圖),設(shè)計(jì)要求彩門的面積為S (單位:m2)•高為h(單位:m)(S,h為常數(shù)),彩門的下底BC固定在廣場地面上,上底和兩腰由不銹鋼支架構(gòu)成,設(shè)腰和下底的夾角為α,不銹鋼支架的長度和記為l.
(1)請將l表示成關(guān)于α的函數(shù)l=f(α);
(2)問當(dāng)α為何值時(shí)l最。坎⑶笞钚≈担

查看答案和解析>>

同步練習(xí)冊答案