【題目】下面是“經(jīng)過(guò)已知直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過(guò)程:
已知:直線l和l外一點(diǎn)P.(如圖1)
求作:直線l的垂線,使它經(jīng)過(guò)點(diǎn)P.
作法:如圖2(1)在直線l上任取兩點(diǎn)A,B;(2)分別以點(diǎn)A,B為圓心,AP,BP長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)Q;(3)作直線PQ.
所以直線PQ就是所求的垂線.
請(qǐng)回答:該作圖的依據(jù)是

【答案】到線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線上(A、B都在線段PQ的垂直平分線上)
【解析】解:到線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線上(A、B都在線段PQ的垂直平分線上),
理由:如圖,∵PA=PQ,PB=PB,
∴點(diǎn)A、點(diǎn)B在線段PQ的垂直平分線上,
∴直線AB垂直平分線段PQ,
∴PQ⊥AB.

只要證明直線AB是線段PQ的垂直平分線即可.本題考查作圖﹣基本作圖,解題的關(guān)鍵是理解到線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線上,屬于中考?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD為正方形,PD⊥平面ABCD且PD=AD,則下列命題中錯(cuò)誤的是( 。

A.過(guò)BD且與PC平行的平面交PA于M點(diǎn),則M為PA的中點(diǎn)
B.過(guò)AC且與PB垂直的平面交PB于N點(diǎn),則N為PB的中點(diǎn)
C.過(guò)AD且與PC垂直的平面交PC于H點(diǎn),則H為PC的中點(diǎn)
D.過(guò)P、B、C的平面與平面PAD的交線為直線l,則l∥AD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

(Ⅰ)已知,證明: ;

(Ⅱ)若對(duì)任意實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是圓的直徑,點(diǎn)在圓上,矩形所在的平面垂直于圓所在的平面,
(1)證明:平面⊥平面
(2)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小麗今天晚自習(xí)準(zhǔn)備復(fù)習(xí)歷史、地理或政治中的一科,她用數(shù)學(xué)游戲的結(jié)果來(lái)決定選哪一科,游戲規(guī)則是:在平面直角坐標(biāo)系中,以原點(diǎn)為起點(diǎn),再分別以 , , 這5個(gè)點(diǎn)為終點(diǎn),得到5個(gè)向量,任取其中兩個(gè)向量,計(jì)算這兩個(gè)向量的數(shù)量積,若,就復(fù)習(xí)歷史,若,就復(fù)習(xí)地理,若,就復(fù)習(xí)政治.

(1)寫(xiě)出的所有可能取值;

(2)求小麗復(fù)習(xí)歷史的概率和復(fù)習(xí)地理的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

設(shè)函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;

(Ⅱ)討論函數(shù)零點(diǎn)的個(gè)數(shù);

(Ⅲ)若對(duì)任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】身穿紅、黃兩種顏色衣服的各有兩人,身穿藍(lán)顏色衣服的有一人,現(xiàn)將這五人排成一行,要求穿相同顏色衣服的人不能相鄰,則不同的排法共有( )

A. 24B. 28C. 36D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門(mén)對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門(mén)的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計(jì)該企業(yè)的職工對(duì)該部門(mén)評(píng)分不低于80的概率;

3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{xn}滿(mǎn)足x1=1,x2=λ,并且 (λ為非零常數(shù),n=2,3,4,…). (Ⅰ)若x1 , x3 , x5成等比數(shù)列,求λ的值;
(Ⅱ)設(shè)0<λ<1,常數(shù)k∈N* , 證明

查看答案和解析>>

同步練習(xí)冊(cè)答案