已知角α頂點在原點,始邊在x軸的正半軸上,終邊在直線l:2x-y=0上,且cosα<0,點P(a,b)是α終點邊上的一點,且|OP|=
5
,求a+b的值.
考點:任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:通過已知條件判斷P的位置,利用三角函數(shù)的定義,列出關系式求出a、b的值即可.
解答: 解:∵角α頂點在原點,始邊在x軸的正半軸上,終邊在直線l:2x-y=0上,且cosα<0,
∴點P(a,b)在第三象限,a<0,b<0;
∴tanα=2,即
b
a
=2
,又|OP|=
5
,即a2+b2=5,解得a=-1,b=-2,
∴a+b=-3.
所求a+b的值為-3.
點評:本題主要考查的三角函數(shù)的定義:若角α的終邊上有一點P(x,y),OP=r則sinα=
y
r
,cosα=
x
r
,tanα=
y
x
的應用,屬于基礎試題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知p:x≥k,q:
3
x+1
<1,如果p是q的充分不必要條件,則實數(shù)k的取值范圍是( 。
A、[2,+∞)
B、(2,+∞)
C、[1,+∞)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果數(shù)列a1,
a2
a1
a3
a2
,…
an
an-1
,…是首項為1,公比q=2的等比數(shù)列.
(1)求a2、a3的值;
(2)求滿足不等式
nan
≥2013的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx,是否存在最小正常數(shù)m,使得a>m時,對任意正實數(shù)x,不等式f(a+x)<f(a)•ex恒成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD為平行四邊形,側面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2
2
,SA=SB=
3

(1)證明:SA⊥BC;
(2)求二面角C-SD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin(4x+
π
2
),求該函數(shù)在[0,2π]的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的方程為x2+y2=1,設E(2,0),過點E斜率為k的直線與圓C交x軸上方A、B兩點,設f(k)=
1
2
1-3k2
S△ABO,求函數(shù)f(k)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=1-
2
2x+1

(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)解不等式f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,an=n3-λn,若數(shù)列{an}為遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案