【題目】已知函數(shù),其中m為常數(shù),且是函數(shù)的極值點(diǎn).

(Ⅰ)求m的值;

(Ⅰ)若上恒成立,求實(shí)數(shù)的最小值.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)先對求導(dǎo),再利用,列式求解,最后再進(jìn)行檢驗(yàn)即可;

(Ⅱ),則題意可轉(zhuǎn)化為上恒成立,求導(dǎo),然后分,三種情況,研究的單調(diào)性,判斷其最小值是否大于0,從而得出結(jié)論.

(Ⅰ),,

是函數(shù)的極值點(diǎn),

,,

時(shí),,

當(dāng)時(shí),,時(shí),,

上單調(diào)遞增,上單調(diào)遞減,

是函數(shù)的極大值點(diǎn),

符合題意;

(Ⅱ),,

由題得上恒成立,

,

,

,

①當(dāng)時(shí),,,

上單調(diào)遞增,,成立;

②當(dāng)時(shí),,

,

時(shí),,

上單調(diào)遞增,

,,

則在上存在唯一使得,

∴當(dāng)時(shí),,上單調(diào)遞減,

,不符合題意;

③當(dāng)時(shí),時(shí),,

上單調(diào)遞減,此時(shí),不符合題意;

綜上所述,實(shí)數(shù)k的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市教學(xué)研究室為了對今后所出試題的難度有更好的把握,提高命題質(zhì)量,對該市高三理科數(shù)學(xué)試卷的得分情況進(jìn)行了調(diào)研.從全市參加考試的理科考生中隨機(jī)抽取了100名考生的數(shù)學(xué)成績(滿分150分),將數(shù)據(jù)分成9組:,,,,,,并整理得到如圖所示的頻率分布直方圖.用統(tǒng)計(jì)的方法得到樣本標(biāo)準(zhǔn)差,以頻率值作為概率估計(jì)值.

(Ⅰ)根據(jù)頻率分布直方圖,求抽取的100名理科考生數(shù)學(xué)成績的平均分及眾數(shù);

(Ⅱ)用頻率估計(jì)概率,從該市所有高三理科考生的數(shù)學(xué)成績中隨機(jī)抽取3個(gè),記理科數(shù)學(xué)成績位于區(qū)間內(nèi)的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望

(Ⅲ)從該市高三理科數(shù)學(xué)考試成績中任意抽取一份,記其成績?yōu)?/span>,依據(jù)以下不等式評判(表示對應(yīng)事件的概率):

,②,

,其中

評判規(guī)則:若至少滿足以上兩個(gè)不等式,則給予這套試卷好評,否則差評.試問:這套試卷得到好評還是差評?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,已知四邊形ABCD是邊長為2的正方形,平面ABCD,E是棱PB的中點(diǎn),且過AEAD的平面與棱PC交于點(diǎn)F.

1)求證:;

2)若平面平面PBC,求線段PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0)的左右焦點(diǎn)分別為F1F2,點(diǎn)P是橢圓C上一點(diǎn),以PF1為直徑的圓Ex2過點(diǎn)F2

1)求橢圓C的方程;

2)過點(diǎn)P且斜率大于0的直線l1C的另一個(gè)交點(diǎn)為A,與直線x4的交點(diǎn)為B,過點(diǎn)(3,)且與l1垂直的直線l2與直線x4交于點(diǎn)D,求△ABD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線上的動(dòng)點(diǎn)到點(diǎn)的距離是它到點(diǎn)的距離的3.

1)求點(diǎn)的坐標(biāo);

2)設(shè)雙曲線的右焦點(diǎn)是,雙曲線經(jīng)過動(dòng)點(diǎn),且,求雙曲線的方程;

3)點(diǎn)關(guān)于直線的對稱點(diǎn)為,試問能否找到一條斜率為)的直線與(2)中的雙曲線交于不同的兩點(diǎn)、,且滿足,若存在,求出斜率的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊以點(diǎn)為圓心,半徑為百米的圓形草坪,草坪內(nèi)距離點(diǎn)百米的點(diǎn)有一用于灌溉的水籠頭,現(xiàn)準(zhǔn)備過點(diǎn)修一條筆直小路交草坪圓周于兩點(diǎn),為了方便居民散步,同時(shí)修建小路,其中小路的寬度忽略不計(jì).

1)若要使修建的小路的費(fèi)用最省,試求小路的最短長度;

2)若要在區(qū)域內(nèi)(含邊界)規(guī)劃出一塊圓形的場地用于老年人跳廣場舞,試求這塊圓形廣場的最大面積.(結(jié)果保留根號(hào)和)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,側(cè)棱與底面垂直的四棱柱的底面是平行四邊形,,

1)求證:∥平面

2)若,,,求與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m{11,131517,19}n{20002001,2019},則mn的個(gè)位數(shù)是1的概率為____________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某企業(yè)中隨機(jī)抽取了5名員工測試他們的藝術(shù)愛好指數(shù)和創(chuàng)新靈感指數(shù),統(tǒng)計(jì)結(jié)果如下表(注:指數(shù)值越高素質(zhì)越優(yōu)秀):

1)求創(chuàng)新靈感指數(shù)關(guān)于藝術(shù)愛好指數(shù)的線性回歸方程;

2)企業(yè)為提高員工的藝術(shù)愛好指數(shù),要求員工選擇音樂和繪畫中的一種進(jìn)行培訓(xùn),培訓(xùn)音樂次數(shù)對藝術(shù)愛好指數(shù)的提高量為,培訓(xùn)繪畫次數(shù)對藝術(shù)愛好指數(shù)的提高量為,其中為參加培訓(xùn)的某員工已達(dá)到的藝術(shù)愛好指數(shù).藝術(shù)愛好指數(shù)已達(dá)到3的員工甲選擇參加音樂培訓(xùn),藝術(shù)愛好指數(shù)已達(dá)到4的員工乙選擇參加繪畫培訓(xùn),在他們都培訓(xùn)了20次后,估計(jì)誰的創(chuàng)新靈感指數(shù)更高?

參考公式:回歸方程中,,.

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案