已知函數(shù)f(x)=.
(1)求函數(shù)f(x)的最小值;
(2)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意m∈R恒成立;q:函數(shù)y=(m2-1)x是增函數(shù).若“pq”為真,“pq”為假,求實(shí)數(shù)m的取值范圍.

(1)1(2)(-∞,-3)∪[-,1]∪(,+∞)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)若將進(jìn)貨單價(jià)為8元的商品按每件10元出售,每天可銷(xiāo)售100件,現(xiàn)準(zhǔn)備采用提高售價(jià),減少進(jìn)貨量的辦法來(lái)增加利潤(rùn),已知這種商品每件銷(xiāo)售價(jià)提高1元,銷(xiāo)售量就要減少10件,問(wèn)該商場(chǎng)將銷(xiāo)售價(jià)每件定為多少元時(shí),才能使得每天所賺的利潤(rùn)最多?銷(xiāo)售價(jià)每件定為多少元時(shí),才能保證每天所賺的利潤(rùn)在300元以上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求下列各式的值.
(1)log535+2-log5-log514;
(2)log2×log3×log5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義在R上的函數(shù)及二次函數(shù)滿足:。
(1)求的解析式;
(2);
(3)設(shè),討論方程的解的個(gè)數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某物體的溫度θ(單位:攝氏度)隨時(shí)間t(單位:分鐘)的變化規(guī)律是:θ=m·2t+21-t(t≥0,且m>0).
(1)如果m=2,求經(jīng)過(guò)多少時(shí)間,物體的溫度為5攝氏度.
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=a-是偶函數(shù),a為實(shí)常數(shù).
(1)求b的值.
(2)當(dāng)a=1時(shí),是否存在n>m>0,使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一次函數(shù)上的增函數(shù),,已知
(1)求;
(2)若單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),有最大值,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

現(xiàn)有一張長(zhǎng)為80 cm,寬為60cm的長(zhǎng)方形鐵皮ABCD,準(zhǔn)備用它做成一只無(wú)蓋長(zhǎng)方體鐵皮盒,要求材料利用率為100%,不考慮焊接處損失.如圖,若長(zhǎng)方形ABCD的一個(gè)角剪下一塊正方形鐵皮,作為鐵皮盒的底面,用余下材料剪拼后作為鐵皮盒的側(cè)面,設(shè)長(zhǎng)方體的底面邊長(zhǎng)為x(cm),高為y(cm),體積為V(cm3)

(1)求出xy的關(guān)系式;
(2)求該鐵皮盒體積V的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)單調(diào)遞增區(qū)間;
(3)若∈[1,1],使得(e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案