如圖,在直三棱柱中,,的中點.

(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.

(Ⅰ)詳見解析;(Ⅱ)

解析試題分析:(Ⅰ)證明線面平行常用以下兩種方法:一是用線面平行的判定定理,二是用面面平行的性質(zhì).本題用這兩種方法都行;
(Ⅱ)首先應(yīng)考慮作出平面截三棱柱所得的截面.作出該截面便很容易得到二面角的平面角即為.
本題也可用向量解決.
試題解析:(Ⅰ)法一:連結(jié),交,連結(jié),則,從而平面.
         
法二:取的中點,連結(jié),易得平面,從而平面.
(Ⅱ)的中點,連結(jié)、,易得平面就是平面,
平面,所以,所以就是該二面角的平面角.
.
考點:立體幾何中線面平行的證明及二面角的計算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O為AB的中點.

(Ⅰ)求證:EO⊥平面ABCD;
(Ⅱ)求點D到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在圓錐PO中, PO=,?O的直徑AB=2, C為弧AB的中點,D為AC的中點.

(1)求證:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱錐P ABC中,已知PA⊥平面ABC,△ABC是邊長為2的正三角形,D,E分別為PB,PC中點

(1)若PA=2,求直線AE與PB所成角的余弦值;
(2)若PA,求證:平面ADE⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在三棱拄中,側(cè)面,已知,.

(Ⅰ)求證:平面;
(Ⅱ)試在棱(不包含端點)上確定一點的位置,使得;
(Ⅲ)在(Ⅱ)的條件下,求和平面所成角正弦值的大小.                                    

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱柱的底面是平行四邊形,且,,,的中點,平面.

(Ⅰ)證明:平面平面;
(Ⅱ)若,試求異面直線所成角的余弦值;
(Ⅲ)在(Ⅱ)的條件下,試求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為菱形,其中,的中點.

(1) 求證:;
(2) 若平面平面,且的中點,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱中,側(cè)棱底面,,,

(1)證明:平面;
(2)若是棱的中點,在棱上是否存在一點,使平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,六棱錐的底面是邊長為1的正六邊形,底面
(Ⅰ)求證:平面平面;
(Ⅱ)若直線PC與平面PDE所成角的正弦值為,求六棱錐高的大小。

查看答案和解析>>

同步練習冊答案