已知斜率為k(k≠0)的直線(xiàn)l過(guò)拋物線(xiàn)C:y2=4x的焦點(diǎn)F且交拋物線(xiàn)于A、B兩點(diǎn).設(shè)線(xiàn)段AB的中點(diǎn)為M.
(1)求點(diǎn)M的軌跡方程;
(2)若-2<k<-1時(shí),點(diǎn)M到直線(xiàn)l':3x+4y-m=0(m為常數(shù),)的距離總不小于,求m的取值范圍.
【答案】分析:(1)設(shè)AB的中點(diǎn)為O(x,y),A(x1,y1),B(x2,y2),直線(xiàn)的方程為:y=k(x-1),得k2x2-(2k2+4)x+k2=0,x1+x2=(2k2+4)=2+,y1+y2=k(x1+x2-2)=,由此能求出點(diǎn)M的軌跡方程.
(2)M()到直線(xiàn)l':3x+4y-m=0的距離d=,由點(diǎn)M到直線(xiàn)l':3x+4y-m=0(m為常數(shù),)的距離總不小于,,由-2<k<-1和m<,能求出m的取值范圍.
解答:解:設(shè)AB的中點(diǎn)為O(x,y);A(x1,y1),B(x2,y2),
∵直線(xiàn)過(guò)拋物線(xiàn)y2=4x得焦點(diǎn)F(1,0),
∴設(shè)直線(xiàn)的方程為:y=k(x-1),①
將①2代入拋物線(xiàn)方程中可得:
k2(x-1)2=4x,
∴k2x2-(2k2+4)x+k2=0,②
∴x1+x2=(2k2+4)=2+
∵y1+y2=k(x1+x2-2)=,
又∵x==1+,…③
y==,
,…④
∴將④代入③可得:
x=1+
∴y2=2x-2.
所以點(diǎn)M的軌跡方程為:y2=2x-2.
(2)由(1)知,點(diǎn)M(,),
∴M(,)到直線(xiàn)l':3x+4y-m=0的距離d=,
∵點(diǎn)M到直線(xiàn)l':3x+4y-m=0(m為常數(shù),)的距離總不小于,
,
,或,
,或
∵-2<k<-1,
∴-<4,
,
∴m,或m≥6,
∵m<,
∴m≤-
故m的取值范圍是{m|m≤-}.
點(diǎn)評(píng):本題考查直線(xiàn)與圓錐曲線(xiàn)的綜合運(yùn)用,考查運(yùn)算推理能力和論證求解能力,綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知斜率為k(k≠0)的直線(xiàn)l過(guò)拋物線(xiàn)C:y2=4x的焦點(diǎn)F且交拋物線(xiàn)于A、B兩點(diǎn).設(shè)線(xiàn)段AB的中點(diǎn)為M.
(1)求點(diǎn)M的軌跡方程;
(2)若-2<k<-1時(shí),點(diǎn)M到直線(xiàn)l':3x+4y-m=0(m為常數(shù),m<
1
3
)的距離總不小于
1
5
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,右焦點(diǎn)F(1,0).過(guò)點(diǎn)F作斜率為k(k≠0)的直線(xiàn)l,交橢圓G于A、B兩點(diǎn),M(2,0)是一個(gè)定點(diǎn).如圖所示,連AM、BM,分別交橢圓G于C、D兩點(diǎn)(不同于A、B),記直線(xiàn)CD的斜率為k1
(Ⅰ)求橢圓G的方程;
(Ⅱ)在直線(xiàn)l的斜率k變化的過(guò)程中,是否存在一個(gè)常數(shù)λ,使得k1=λk恒成立?若存在,求出這個(gè)常數(shù)λ;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a
>b>0)的離心率為
2
2
,且橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為2
2
.斜率為k(k≠0)的直線(xiàn)l過(guò)橢圓的上焦點(diǎn)且與橢圓相交于P,Q兩點(diǎn),線(xiàn)段PQ的垂直平分線(xiàn)與y軸相交于點(diǎn)M(0,m).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求m的取值范圍.
(3)試用m表示△MPQ的面積S,并求面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知斜率為k(k≠0)的直線(xiàn)l交橢圓C:
x2
4
+y2=1
于M(x1,y1),N(x2,y2)兩點(diǎn).
(1)記直線(xiàn)OM,ON的斜率分別為k1,k2,當(dāng)3(k1+k2)=8k時(shí),證明:直線(xiàn)l過(guò)定點(diǎn);
(2)若直線(xiàn)l過(guò)點(diǎn)D(1,0),設(shè)△OMD與△OND的面積比為t,當(dāng)k2
5
12
時(shí),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇期末題 題型:解答題

已知斜率為k(k≠0)的直線(xiàn)l過(guò)拋物線(xiàn)C:y2=4x的焦點(diǎn)F且交拋物線(xiàn)于A、B兩點(diǎn).設(shè)線(xiàn)段AB的中點(diǎn)為M.
(1)求點(diǎn)M的軌跡方程;
(2)若﹣2<k<﹣1時(shí),點(diǎn)M到直線(xiàn)l':3x+4y﹣m=0(m為常數(shù),)的距離總不小于,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案