在等差數(shù)列{an}中,已知a5+a6=
2
3
,則數(shù)列{an}的前10項的和S10=
 
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項公式和前n項和公式直接求解.
解答: 解:等差數(shù)列{an}中,
∵a5+a6=
2
3
,
∴數(shù)列{an}的前10項的和:
S10=
10
2
(a1+a10)
=5(a5+a6)=
10
3

故答案為:
10
3
點評:本題考查等差數(shù)列的前10項和公式的求法,是基礎題,解題時要注意等差數(shù)列的通項公式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三棱柱ABC-A1B1C1,AA1⊥平面ABC,AB=AC=2,∠BAC=90°,四邊形AA1C1C為正方形,M,N分別為A1C,A1B1中點.
(Ⅰ)求證:MN∥面BCC1B1;
(Ⅱ)求二面角A-B1C-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設橢圓
x2
a2
+
y2
b2
=1(a>b>0)長軸的右端點為A,短軸端點分別為B、C,另有拋物線y=x2+b.
(Ⅰ)若拋物線上存在點D,使四邊形ABCD為菱形,求橢圓的方程;
(Ⅱ)若a=2,過點B作拋物線的切線,切點為P,直線PB與橢圓相交于另一點Q,求
|PQ|
|QB|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某廠擬在2014年通過廣告促銷活動推銷產品.經調查測算,產品的年銷售量(假定年產量=年銷售量)x萬件與年廣告費用t(t≥0)萬元滿足關系式:x=3-
k
t+1
(k為常數(shù)).若不做廣告,則產品的年銷售量恰好為1萬件.已知2014年生產該產品時,該廠需要先固定投入8萬元,并且預計生產每1萬件該產品時,需再投入4萬元,每件產品的銷售價格定為每件產品所需的年平均成本的1.5倍(每件產品的成本包括固定投入和生產再投入兩部分,不包括廣告促銷費用).
(Ⅰ)將2014年該廠的年銷售利潤y(萬元)表示為年廣告促銷費用t(萬元)的函數(shù);
(Ⅱ)2014年廣告促銷費用投入多少萬元時,該廠將獲利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個算法(如圖),則輸出結果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知算數(shù)z滿足(1+i)z=-1+5i,則z=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是二次函數(shù),關于x的方程mf2(x)+nf(x)+p=0(m,n,p為實數(shù))有4個不同的實數(shù)根,且它們從小到大的順序為:x1<x2<x3<x4,則x1-x2-x3+x4的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線
x
a
+
y
b
=1(a>0,b>0)經過點(1,1),則ab的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四棱錐的底面面積為4,側面積為5,則它的體積為
 

查看答案和解析>>

同步練習冊答案